
-- --

INTERNET-DRAFT John Kohl
B. Clifford Neuman

21 April 1993

The Kerberos Network Authentication Service (V5)

STATUS OF THIS MEMO

This document is an Internet Draft. Internet Drafts are working documents of the Internet Engineer-
ing Task Force (IETF), its Areas, and its Working Groups. Note that other groups may also distribute
working documents as Internet Drafts.

Internet Drafts are draft documents valid for a maximum of six months. Internet Drafts may be
updated, replaced, or obsoleted by other documents at any time. It is not appropriate to use Internet Drafts
as reference material or to cite them other than as a "working draft" or "work in progress."

Please check the I-D abstract listing contained in each Internet Draft directory to learn the current
status of this or any other Internet Draft. Distribution of this memo is unlimited. Please send comments to
"krb-protocol@MIT.EDU."

ABSTRACT

This document gives an overview and specification of Version 5 of the protocol for the Kerberos net-
work authentication system. Version 4, described elsewhere [1, 2], is presently in production use at MIT’s
Project Athena, and at other Internet sites.

OVERVIEW

This INTERNET-DRAFT describes the concepts and model upon which the Kerberos network
authentication system is based. It also specifies Version 5 of the Kerberos protocol.

The motivations, goals, assumptions, and rationale behind most design decisions are treated cur-
sorily; for Version 4 they are fully described in the Kerberos portion of the Athena Technical Plan [1]. The
protocols are under review, and are not being submitted for consideration as an Internet standard at this
time. Comments are encouraged. Requests for addition to an electronic mailing list for discussion of Ker-
beros, kerberos@MIT.EDU, may be addressed to kerberos−request@MIT.EDU. This mailing
list is gatewayed onto the Usenet as the group comp.protocols.kerberos. Requests for further
information, including documents and code availability, may be sent to info−kerberos@MIT.EDU.

BACKGROUND

The Kerberos model is based in part on Needham and Schroeder’s trusted third-party authentication
protocol [3] and on modifications suggested by Denning and Sacco [4]. The original design and implemen-
tation of Kerberos Versions 1 through 4 was the work of two former Project Athena staff members, Steve
Miller of Digital Equipment Corporation and Clifford Neuman (now at the Information Sciences Institute
of the University of Southern California), along with Jerome Saltzer, Technical Director of Project Athena,
and Jeffrey Schiller, MIT Campus Network Manager. Many other members of Project Athena have also
contributed to the work on Kerberos. Version 4 is publicly available, and has seen wide use across the
Internet.

Version 5 (described in this document) has evolved from Version 4 based on new requirements and
desires for features not available in Version 4. Details on the differences between Kerberos Versions 4 and
5 can be found in [5].

hhhhhhhhhhhhhhhhhh
Project Athena, Athena, Athena MUSE, Discuss, Hesiod, Kerberos, Moira, and Zephyr are trademarks of the Massachusetts
Institute of Technology (MIT). No commercial use of these trademarks may be made without prior written permission of
MIT.

Overview - 1 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

1. Introduction
Kerberos provides a means of verifying the identities of principals, (e.g. a workstation user or a net-

work server) on an open (unprotected) network. This is accomplished without relying on authentication by
the host operating system, without basing trust on host addresses, without requiring physical security of all
the hosts on the network, and under the assumption that packets traveling along the network can be read,
modified, and inserted at will1. Kerberos performs authentication under these conditions as a trusted third-
party authentication service by using conventional (shared secret key2) cryptography.

The authentication process proceeds as follows: A client sends a request to the authentication server
(AS) requesting "credentials" for a given server. The AS responds with these credentials, encrypted in the
client’s key. The credentials consist of 1) a "ticket" for the server and 2) a temporary encryption key (often
called a "session key"). The client transmits the ticket (which contains the client’s identity and a copy of
the session key, all encrypted in the server’s key) to the server. The session key (now shared by the client
and server) is used to authenticate the client, and may optionally be used to authenticate the server. It may
also be used to encrypt further communication between the two parties or to exchange a separate sub-
session key to be used to encrypt further communication.

The implementation consists of one or more authentication servers running on physically secure
hosts. The authentication servers maintain a database of principals (i.e., users and servers) and their secret
keys. Code libraries provide encryption and implement the Kerberos protocol. In order to add authentica-
tion to its transactions, a typical network application adds one or two calls to the Kerberos library, which
results in the transmission of the necessary messages to achieve authentication.

The Kerberos protocol consists of several sub-protocols (or exchanges). There are two methods by
which a client can ask a Kerberos server for credentials. In the first approach, the client sends a cleartext
request for a ticket for the desired server to the AS. The reply is sent encrypted in the client’s secret key.
Usually this request is for a ticket-granting ticket (TGT) which can later be used with the ticket-granting
server (TGS). In the second method, the client sends a request to the TGS. The client sends the TGT to
the TGS in the same manner as if it were contacting any other application server which requires Kerberos
credentials. The reply is encrypted in the session key from the TGT.

Once obtained, credentials may be used to verify the identity of the principals in a transaction, to
ensure the integrity of messages exchanged between them, or to preserve privacy of the messages. The
application is free to choose whatever protection may be necessary.

To verify the identities of the principals in a transaction, the client transmits the ticket to the server.
Since the ticket is sent "in the clear" (parts of it are encrypted, but this encryption doesn’t thwart replay)
and might be intercepted and reused by an attacker, additional information is sent to prove that the message
was originated by the principal to whom the ticket was issued. This information (called the authenticator)
is encrypted in the session key, and includes a timestamp. The timestamp proves that the message was
recently generated and is not a replay. Encrypting the authenticator in the session key proves that it was
generated by a party possessing the session key. Since no one except the requesting principal and the
server know the session key (it is never sent over the network in the clear) this guarantees the identity of
the client.

The integrity of the messages exchanged between principals can also be guaranteed using the session
key (passed in the ticket and contained in the credentials). This approach provides detection of both replay
attacks and message stream modification attacks. It is accomplished by generating and transmitting a
collision-proof checksum (elsewhere called a hash or digest function) of the client’s message, keyed with
the session key. Privacy and integrity of the messages exchanged between principals can be secured by
encrypting the data to be passed using the session key passed in the ticket, and contained in the credentials.
hhhhhhhhhhhhhhhhhh
1 Note, however, that many applications use Kerberos’ functions only upon the initiation of a stream-based network con-
nection, and assume the absence of any ‘‘hijackers’’ who might subvert such a connection. Such use implicitly trusts the
host addresses involved.
2 Secret and private are often used interchangeably in the literature. In our usage, it takes two (or more) to share a secret,
thus a shared DES key is a secret key. Something is only private when no one but its owner knows it. Thus, in public key
cryptosystems, one has a public and a private key.

Section 1. - 2 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

The authentication exchanges mentioned above require read-only access to the Kerberos database.
Sometimes, however, the entries in the database must be modified, such as when adding new principals or
changing a principal’s key. This is done using a protocol between a client and a third Kerberos server, the
Kerberos Administration Server (KADM). The administration protocol is not described in this document.
There is also a protocol for maintaining multiple copies of the Kerberos database, but this can be con-
sidered an implementation detail and may vary to support different database technologies.

1.1. Cross-Realm Operation
The Kerberos protocol is designed to operate across organizational boundaries. A client in one

organization can be authenticated to a server in another. Each organization wishing to run a Kerberos
server establishes its own "realm". The name of the realm in which a client is registered is part of the
client’s name, and can be used by the end-service to decide whether to honor a request.

By establishing "inter-realm" keys, the administrators of two realms can allow a client authenticated
in the local realm to use its authentication remotely3. The exchange of inter-realm keys (a separate key
may be used for each direction) registers the ticket-granting service of each realm as a principal in the other
realm. A client is then able to obtain a ticket-granting ticket for the remote realm’s ticket-granting service
from its local realm. When that ticket-granting ticket is used, the remote ticket-granting service uses the
inter-realm key (which usually differs from its own normal TGS key) to decrypt the ticket-granting ticket,
and is thus certain that it was issued by the client’s own TGS. Tickets issued by the remote ticket-granting
service will indicate to the end-service that the client was authenticated from another realm.

A realm is said to communicate with another realm if the two realms share an inter-realm key, or if
the local realm shares an inter-realm key with an intermediate realm that communicates with the remote
realm. An authentication path is the sequence of intermediate realms that are transited in communicating
from one realm to another.

Realms are typically organized hierarchically. Each realm shares a key with its parent and a dif-
ferent key with each child. If an inter-realm key is not directly shared by two realms, the hierarchical
organization allows an authentication path to be easily constructed. If a hierarchical organization is not
used, it may be necessary to consult some database in order to construct an authentication path between
realms.

Although realms are typically hierarchical, intermediate realms may be bypassed to achieve cross-
realm authentication through alternate authentication paths (these might be established to make communi-
cation between two realms more efficient). It is important for the end-service to know which realms were
transited when deciding how much faith to place in the authentication process. To facilitate this decision, a
field in each ticket contains the names of the realms that were involved in authenticating the client.

1.2. Environmental assumptions
Kerberos imposes a few assumptions on the environment in which it can properly function:

g "Denial of service" attacks are not solved with Kerberos. There are places in these protocols where
an intruder can prevent an application from participating in the proper authentication steps. Detec-
tion and solution of such attacks (some of which can appear to be not-uncommon "normal" failure
modes for the system) is usually best left to the human administrators and users.

g Principals must keep their secret keys secret. If an intruder somehow steals a principal’s key, it will
be able to masquerade as that principal or impersonate any server to the legitimate principal.

g "Password guessing" attacks are not solved by Kerberos. If a user chooses a poor password, it is
possible for an attacker to successfully mount an offline dictionary attack by repeatedly attempting to
decrypt, with successive entries from a dictionary, messages obtained which are encrypted under a
key derived from the user’s password.

g Each host on the network must have a clock which is "loosely synchronized" to the time of the other
hhhhhhhhhhhhhhhhhh
3 Of course, with appropriate permission the client could arrange registration of a separately-named principal in a remote
realm, and engage in normal exchanges with that realm’s services. However, for even small numbers of clients this be-
comes cumbersome, and more automatic methods as described here are necessary.

Section 1.2. - 3 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

hosts; this synchronization is used to reduce the bookkeeping needs of application servers when they
do replay detection. The degree of "looseness" can be configured on a per-server basis. If the clocks
are synchronized over the network, the clock synchronization protocol must itself be secured from
network attackers.

g Principal identifiers are not recycled on a short-term basis. A typical mode of access control will use
access control lists (ACLs) to grant permissions to particular principals. If a stale ACL entry
remains for a deleted principal and the principal identifier is reused, the new principal will inherit
rights specified in the stale ACL entry. By not re-using principal identifiers, the danger of inadver-
tent access is removed.

1.3. Glossary of terms
Below is a list of terms used throughout this document.

Authentication Verifying the claimed identity of a principal.

Authentication header A record containing a Ticket and an Authenticator to be presented to a server as
part of the authentication process.

Authentication path A sequence of intermediate realms transited in the authentication process when
communicating from one realm to another.

Authenticator A record containing information that can be shown to have been recently gen-
erated using the session key known only by the client and server.

Authorization The process of determining whether a client may use a service, which objects the
client is allowed to access, and the type of access allowed for each.

Capability A token that grants the bearer permission to access an object or service. In Ker-
beros, this might be a ticket whose use is restricted by the contents of the authori-
zation data field, but which lists no network addresses, together with the session
key necessary to use the ticket.

Ciphertext The output of an encryption function. Encryption transforms plaintext into cipher-
text.

Client A process that makes use of a network service on behalf of a user. Note that in
some cases a Server may itself be a client of some other server (e.g. a print server
may be a client of a file server).

Credentials A ticket plus the secret session key necessary to successfully use that ticket in an
authentication exchange.

KDC Key Distribution Center, a network service that supplies tickets and temporary
session keys; or an instance of that service or the host on which it runs. The KDC
services both initial ticket and ticket-granting ticket requests. The initial ticket
portion is sometimes referred to as the Authentication Server (or service). The
ticket-granting ticket portion is sometimes referred to as the ticket-granting server
(or service).

Section 1.3. - 4 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

Kerberos Aside from the 3-headed dog guarding Hades, the name given to Project Athena’s
authentication service, the protocol used by that service, or the code used to
implement the authentication service.

Plaintext The input to an encryption function or the output of a decryption function.
Decryption transforms ciphertext into plaintext.

Principal A uniquely named client or server instance that participates in a network commun-
ication.

Principal identifier The name used to uniquely identify each different principal.

Seal To encipher a record containing several fields in such a way that the fields cannot
be individually replaced without either knowledge of the encryption key or leav-
ing evidence of tampering.

Secret key An encryption key shared by a principal and the KDC, distributed outside the
bounds of the system, with a long lifetime. In the case of a human user’s princi-
pal, the secret key is derived from a password.

Server A particular Principal which provides a resource to network clients.

Service A resource provided to network clients; often provided by more than one server
(for example, remote file service).

Session key A temporary encryption key used between two principals, with a lifetime limited
to the duration of a single login "session".

Sub-session key A temporary encryption key used between two principals, selected and exchanged
by the principals using the session key, and with a lifetime limited to the duration
of a single association.

Ticket A record that helps a client authenticate itself to a server; it contains the client’s
identity, a session key, a timestamp, and other information, all sealed using the
server’s secret key. It only serves to authenticate a client when presented along
with a fresh Authenticator.

2. Ticket flag uses and requests
Each Kerberos ticket contains a set of flags which are used to indicate various attributes of that ticket.
Most flags may be requested by a client when the ticket is obtained; some are automatically turned on and
off by a Kerberos server as required. The following sections explain what the various flags mean, and
gives examples of reasons to use such a flag.

2.1. Initial and pre-authenticated tickets
The INITIAL flag indicates that a ticket was issued using the AS protocol and not issued based on a

ticket-granting ticket. Application servers that want to require the knowledge of a client’s secret key (e.g. a
password-changing program) can insist that this flag be set in any tickets they accept, and thus be assured
that the client’s key was recently presented to the application client.

The PRE-AUTHENT and HW-AUTHENT flags provide addition information about the initial
authentication, regardless of whether the current ticket was issued directly (in which case INITIAL will
also be set) or issued on the basis of a ticket-granting ticket (in which case the INITIAL flag is clear, but
the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the ticket-granting ticket).

Section 2.1. - 5 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

2.2. Invalid tickets
The INVALID flag indicates that a ticket is invalid. Application servers must reject tickets which

have this flag set. A postdated ticket will usually be issued in this form. Invalid tickets must be validated
by the KDC before use, by presenting them to the KDC in a TGS request with the VALIDATE option
specified. The KDC will only validate tickets after their starttime has passed. The validation is required
so that postdated tickets which have been stolen before their starttime can be rendered permanently
invalid (through a hot-list mechanism).

2.3. Renewable tickets
Applications may desire to hold tickets which can be valid for long periods of time. However, this

can expose their credentials to potential theft for equally long periods, and those stolen credentials would
be valid until the expiration time of the ticket(s). Simply using short-lived tickets and obtaining new ones
periodically would require the client to have long-term access to its secret key, an even greater risk.
Renewable tickets can be used to mitigate the consequences of theft. Renewable tickets have two "expira-
tion times": the first is when the current instance of the ticket expires, and the second is the latest permissi-
ble value for an individual expiration time. An application client must periodically (i.e. before it expires)
present a renewable ticket to the KDC, with the RENEW option set in the KDC request. The KDC will
issue a new ticket with a new session key and a later expiration time. All other fields of the ticket are left
unmodified by the renewal process. When the latest permissible expiration time arrives, the ticket expires
permanently. At each renewal, the KDC may consult a hot-list to determine if the ticket had been reported
stolen since its last renewal; it will refuse to renew such stolen tickets, and thus the usable lifetime of stolen
tickets is reduced.

The RENEWABLE flag in a ticket is normally only interpreted by the ticket-granting service (dis-
cussed below in section 3.3). It can usually be ignored by application servers. However, some particularly
careful application servers may wish to disallow renewable tickets.

If a renewable ticket is not renewed by its expiration time, the KDC will not renew the ticket. The
RENEWABLE flag is reset by default, but a client may request it be set by setting the RENEWABLE
option in the KRB_AS_REQ message. If it is set, then the renew-till field in the ticket contains the time
after which the ticket may not be renewed.

2.4. Postdated tickets
Applications may occasionally need to obtain tickets for use much later, e.g. a batch submission sys-

tem would need tickets to be valid at the time the batch job is serviced. However, it is dangerous to hold
valid tickets in a batch queue, since they will be on-line longer and more prone to theft. Postdated tickets
provide a way to obtain these tickets from the KDC at job submission time, but to leave them "dormant"
until they are activated and validated by a further request of the KDC. If a ticket theft were reported in the
interim, the KDC would refuse to validate the ticket, and the thief would be foiled.

The MAY-POSTDATE flag in a ticket is normally only interpreted by the ticket-granting service. It
can be ignored by application servers. This flag must be set in a ticket-granting ticket in order to issue a
postdated ticket based on the presented ticket. It is reset by default; it may be requested by a client by set-
ting the ALLOW-POSTDATE option in the KRB_AS_REQ message. This flag does not allow a client to
obtain a postdated ticket-granting ticket; postdated ticket-granting tickets can only by obtained by request-
ing the postdating in the KRB_AS_REQ message. The life (endtime-starttime) of a postdated ticket will
be the remaining life of the ticket-granting ticket at the time of the request, unless the RENEWABLE
option is also set, in which case it can be the full life (endtime-starttime) of the ticket-granting ticket. The
KDC may limit how far in the future a ticket may be postdated.

The POSTDATED flag indicates that a ticket has been postdated. The application server can check
the authtime field in the ticket to see when the original authentication occurred. Some services may
choose to reject postdated tickets, or they may only accept them within a certain period after the original
authentication. When the KDC issues a POSTDATED ticket, it will also be marked as INVALID, so that
the application client must present the ticket to the KDC to be validated before use.

Section 2.4. - 6 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

2.5. Proxiable and proxy tickets
At times it may be necessary for a principal to allow a service to perform an operation on its behalf.

The service must be able to take on the identity of the client, but only for a particular purpose. A principal
can allow a service to take on the principal’s identity for a particular purpose by granting it a proxy.

The PROXIABLE flag in a ticket is normally only interpreted by the ticket-granting service. It can
be ignored by application servers. When set, this flag tells the ticket-granting server that it is OK to issue a
new ticket (but not a ticket-granting ticket) with a different network address based on this ticket. This flag
is set by default.

This flag allows a client to pass a proxy to a server to perform a remote request on its behalf, e.g. a
print service client can give the print server a proxy to access the client’s files on a particular file server in
order to satisfy a print request.

In order to complicate the use of stolen credentials, Kerberos tickets are usually valid from only
those network addresses specifically included in the ticket4. For this reason, a client wishing to grant a
proxy must request a new ticket valid for the network address of the service to be granted the proxy.

The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket. Application servers may
check this flag and require additional authentication from the agent presenting the proxy in order to provide
an audit trail.

2.6. Forwardable tickets
Authentication forwarding is an instance of the proxy case where the service is granted complete use

of the client’s identity. An example where it might be used is when a user logs in to a remote system and
wants authentication to work from that system as if the login were local.

The FORWARDABLE flag in a ticket is normally only interpreted by the ticket-granting service. It
can be ignored by application servers. The FORWARDABLE flag has an interpretation similar to that of
the PROXIABLE flag, except ticket-granting tickets may also be issued with different network addresses.
This flag is reset by default, but users may request that it be set by setting the FORWARDABLE option in
the AS request when they request their initial ticket-granting ticket.

This flag allows for authentication forwarding without requiring the user to enter a password again.
If the flag is not set, then authentication forwarding is not permitted, but the same end result can still be
achieved if the user engages in the AS exchange with the requested network addresses and supplies a pass-
word.

The FORWARDED flag is set by the TGS when a client presents a ticket with the FORWARD-
ABLE flag set and requests it be set by specifying the FORWARDED KDC option and supplying a set of
addresses for the new ticket. It is also set in all tickets issued based on tickets with the FORWARDED flag
set. Application servers may wish to process FORWARDED tickets differently than non-FORWARDED
tickets.

2.7. Other KDC options
There are two additional options which may be set in a client’s request of the KDC. The

RENEWABLE-OK option indicates that the client will accept a renewable ticket if a ticket with the
requested life cannot otherwise be provided. If a ticket with the requested life cannot be provided, then the
KDC may issue a renewable ticket with a renew-till equal to the the requested endtime. The value of the
renew-till field may still be adjusted by site-determined limits or limits imposed by the individual principal
or server.

The ENC-TKT-IN-SKEY option is honored only by the ticket-granting service. It indicates that the
to-be-issued ticket for the end server is to be encrypted in the session key from the additional ticket-
granting ticket provided with the request. See section 3.3.3 for specific details.

hhhhhhhhhhhhhhhhhh
4 It is permissible to request or issue tickets with no network addresses specified, but we do not recommend it.
5 The password-changing request must not be honored unless the requester can provide the old password (the user’s

Section 3.1. - 7 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

3. Message Exchanges
The following sections describe the interactions between network clients and servers and the messages in-
volved in those exchanges.

3.1. The Authentication Service Exchange

Summary
Message direction Message type Section
1. Client to Kerberos KRB_AS_REQ 5.4.1
2. Kerberos to client KRB_AS_REP or 5.4.2

KRB_ERROR 5.9.1

The Authentication Service (AS) Exchange between the client and the Kerberos Authentication
Server is usually initiated by a client when it wishes to obtain authentication credentials for a given server
but currently holds no credentials. The client’s secret key is used for encryption and decryption. This ex-
change is typically used at the initiation of a login session, to obtain credentials for a Ticket-Granting
Server, which will subsequently be used to obtain credentials for other servers (see section 3.3) without re-
quiring further use of the client’s secret key. This exchange is also used to request credentials for services
which must not be mediated through the Ticket-Granting Service, but rather require a principal’s secret
key, such as the password-changing service5. This exchange does not by itself provide any assurance of
the the identity of the user6.

The exchange consists of two messages: KRB_AS_REQ from the client to Kerberos, and
KRB_AS_REP or KRB_ERROR in reply. The formats for these messages are described in sections 5.4.1,
5.4.2, and 5.9.1.

In the request, the client sends (in cleartext) its own identity and the identity of the server for which it
is requesting credentials. The response, KRB_AS_REP, contains a ticket for the client to present to the
server, and a session key that will be shared by the client and the server. The session key and additional
information are encrypted in the client’s secret key. The KRB_AS_REP message contains information
which can be used to detect replays, and to associate it with the message to which it replies. Various errors
can occur; these are indicated by an error response (KRB_ERROR) instead of the KRB_AS_REP response.
The error message is not encrypted. The KRB_ERROR message also contains information which can be
used to associate it with the message to which it replies. The lack of encryption in the KRB_ERROR mes-
sage precludes the ability to detect replays or fabrications of such messages.

In the normal case the authentication server does not know whether the client is actually the principal
named in the request. It simply sends a reply without knowing or caring whether they are the same. This
is acceptable because nobody but the principal whose identity was given in the request will be able to use
the reply. Its critical information is encrypted in that principal’s key. The initial request supports an
optional field that can be used to pass additional information that might be needed for the initial exchange.
This field may be used for pre-authentication if desired, but the mechanism is not currently specified.

3.1.1. Generation of KRB_AS_REQ message

The client may specify a number of options in the initial request. Among these options are whether
pre-authentication is to be performed; whether the requested ticket is to be renewable, proxiable, or for-
wardable; whether it should be postdated or allow postdating of derivative tickets; and whether a renewable
ticket will be accepted in lieu of a non-renewable ticket if the requested ticket expiration date cannot be
satisfied by a non-renewable ticket (due to configuration constraints; see section 4). See section A.1 for
pseudocode.
hhhhhhhhhhhhhhhhhh
current secret key). Otherwise, it would be possible for someone to walk up to an unattended session and change another
user’s password.
6 To authenticate a user logging on to a local system, the credentials obtained in the AS exchange may first be used in a
TGS exchange to obtain credentials for a local server. Those credentials must then be verified by the local server through
successful completion of the Client/Server exchange.

Section 3.1.1. - 8 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

The client prepares the KRB_AS_REQ message and sends it to the KDC.

3.1.2. Receipt of KRB_AS_REQ message

If all goes well, processing the KRB_AS_REQ message will result in the creation of a ticket for the
client to present to the server. The format for the ticket is described in section 5.3.1. The contents of the
ticket are determined as follows.

3.1.3. Generation of KRB_AS_REP message

The authentication server looks up the client and server principals named in the KRB_AS_REQ in its
database, extracting their respective keys. If required, the server pre-authenticates the request, and if the
pre-authentication check fails, an error message with the code KDC_ERR_PREAUTH_FAILED is
returned. If the server cannot accommodate the requested encryption type, an error message with code
KDC_ERR_ETYPE_NOSUPP is returned. Otherwise it generates a "random" session key7.

If the requested start time is absent or indicates a time in the past, then the start time of the ticket is
set to the authentication server’s current time. If it indicates a time in the future, but the POSTDATED
option has not been specified, then the error KDC_ERR_CANNOT_POSTDATE is returned. Otherwise
the requested start time is checked against the policy of the local realm (the administrator might decide to
prohibit certain types or ranges of postdated tickets), and if acceptable, the ticket’s start time is set as
requested and the INVALID flag is set in the new ticket. The postdated ticket must be validated before use
by presenting it to the KDC after the start time has been reached.

The expiration time of the ticket will be set to the minimum of the following:

gThe expiration time (endtime) requested in the KRB_AS_REQ message.

gThe ticket’s start time plus the maximum allowable lifetime associated with the client principal (the au-
thentication server’s database includes a maximum ticket lifetime field in each principal’s record; see sec-
tion 4).

gThe ticket’s start time plus the maximum allowable lifetime associated with the server principal.

gThe ticket’s start time plus the maximum lifetime set by the policy of the local realm.

If the requested expiration time minus the start time (as determined above) is less than a site-
determined minimum lifetime, an error message with code KDC_ERR_NEVER_VALID is returned. If the
requested expiration time for the ticket exceeds what was determined as above, and if the
"RENEWABLE-OK" option was requested, then the "RENEWABLE" flag is set in the new ticket, and the
renew-till value is set as if the "RENEWABLE" option were requested (the field and option names are
described fully in section 5.4.1).

If the RENEWABLE option has been requested or if the RENEWABLE-OK option has been set and a
renewable ticket is to be issued, then the renew-till field is set to the minimum of:

g Its requested value.

gThe start time of the ticket plus the minimum of the two maximum renewable lifetimes associated with
the principals’ database entries.

gThe start time of the ticket plus the maximum renewable lifetime set by the policy of the local realm.

The flags field of the new ticket will have the following options set if they have been requested and if
the policy of the local realm allows: FORWARDABLE, MAY-POSTDATE, POSTDATED, PROXI-
ABLE, RENEWABLE. If the new ticket is postdated (the start time is in the future), its INVALID flag will
also be set.

If all of the above succeed, the server formats a KRB_AS_REP message (see section 5.4.2), copying
the addresses in the request into the caddr of the response, placing any required pre-authentication data into
hhhhhhhhhhhhhhhhhh
7 "Random" means that, among other things, it should be impossible to guess the next session key based on knowledge of
past session keys. This can only be achieved in a pseudo-random number generator if it is based on cryptographic princi-
ples. It would be more desirable to use a truly random number generator, such as one based on measurements of random
physical phenomena.

Section 3.1.3. - 9 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

the padata of the response, and encrypts the ciphertext part in the client’s key using the requested encryp-
tion method, and sends it to the client. See section A.2 for pseudocode.

3.1.4. Generation of KRB_ERROR message

Several errors can occur, and the Authentication Server responds by returning an error message,
KRB_ERROR, to the client, with the error-code and e-text fields set to appropriate values. The error
message contents and details are described in Section 5.9.1.

3.1.5. Receipt of KRB_AS_REP message

If the reply message type is KRB_AS_REP, then the client verifies that the cname and crealm fields
in the cleartext portion of the reply match what it requested. If any padata fields are present, they may be
used to derive the proper secret key to decrypt the message. The client decrypts the encrypted part of the
response using its secret key, verifies that the nonce in the encrypted part matches the nonce it supplied in
its request (to detect replays). It also verifies that the sname and srealm in the response match those in the
request, and that the host address field is also correct. It then stores the ticket, session key, start and expira-
tion times, and other information for later use. The key-expiration field from the encrypted part of the
response may be checked to notify the user of impending key expiration (the client program could then
suggest remedial action, such as a password change). See section A.3 for pseudocode.

Proper decryption of the KRB_AS_REP message is not sufficient to verify the identity of the user;
the user and an attacker could cooperate to generate a KRB_AS_REP format message which decrypts
properly but is not from the proper KDC. If the host wishes to verify the identity of the user, it must
require the user to present application credentials which can be verified using a securely-stored secret key.
If those credentials can be verified, then the identity of the user can be assured.

3.1.6. Receipt of KRB_ERROR message

If the reply message type is KRB_ERROR, then the client interprets it as an error and performs
whatever application-specific tasks are necessary to recover.

3.2. The Client/Server Authentication Exchange

Summary
Message direction Message type Section
Client to Application server KRB_AP_REQ 5.5.1
[optional] Application server to client KRB_AP_REP or 5.5.2

KRB_ERROR 5.9.1

The client/server authentication (CS) exchange is used by network applications to authenticate the
client to the server and vice versa. The client must have already acquired credentials for the server using
the AS or TGS exchange.

3.2.1. The KRB_AP_REQ message

The KRB_AP_REQ contains authentication information which should be part of the first message in
an authenticated transaction. It contains a ticket, an authenticator, and some additional bookkeeping infor-
mation (see section 5.5.1 for the exact format). The ticket by itself is insufficient to authenticate a client,
since tickets are passed across the network in cleartext8, so the authenticator is used to prevent invalid
replay of tickets by proving to the server that the client knows the session key of the ticket and thus is enti-
tled to use it. The KRB_AP_REQ message is referred to elsewhere as the "authentication header."

hhhhhhhhhhhhhhhhhh
8 Tickets contain both an encrypted and unencrypted portion, so cleartext here refers to the entire unit, which can be copied
from one message and replayed in another without any cryptographic skill.

Section 3.2.1. - 10 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

3.2.2. Generation of a KRB_AP_REQ message

When a client wishes to initiate authentication to a server, it obtains (either through a credentials
cache, the AS exchange, or the TGS exchange) a ticket and session key for the desired service. The client
may re-use any tickets it holds until they expire. The client then constructs a new Authenticator from the
the system time, its name, and optionally an application specific checksum, an initial sequence number to
be used in KRB_SAFE or KRB_PRIV messages, and/or a session subkey to be used in negotiations for a
session key unique to this particular session. Authenticators may not be re-used and will be rejected if
replayed to a server9. If a sequence number is to be included, it should be randomly chosen so that even
after many messages have been exchanged it is not likely to collide with other sequence numbers in use.

The client may indicate a requirement of mutual authentication or the use of a session-key based
ticket by setting the appropriate flag(s) in the ap-options field of the message.

The Authenticator is encrypted in the session key and combined with the ticket to form the
KRB_AP_REQ message which is then sent to the end server along with any additional application-specific
information. See section A.9 for pseudocode.

3.2.3. Receipt of KRB_AP_REQ message

Authentication is based on the server’s current time of day (clocks must be loosely synchronized),
the authenticator, and the ticket. Several errors are possible. If an error occurs, the server is expected to
reply to the client with a KRB_ERROR message. This message may be encapsulated in the application
protocol if its "raw" form is not acceptable to the protocol. The format of error messages is described in
section 5.9.1.

The algorithm for verifying authentication information is as follows. If the message type is not
KRB_AP_REQ, the server returns the KRB_AP_ERR_MSG_TYPE error. If the key version indicated by
the Ticket in the KRB_AP_REQ is not one the server can use (e.g., it indicates an old key, and the server
no longer possesses a copy of the old key), the KRB_AP_ERR_BADKEYVER error is returned. If the
USE-SESSION-KEY flag is set in the ap-options field, it indicates to the server that the ticket is encrypted
in the session key from the server’s ticket-granting ticket rather than its secret key10. Since it is possible
for the server to be registered in multiple realms, with different keys in each, the srealm field in the unen-
crypted portion of the ticket in the KRB_AP_REQ is used to specify which secret key the server should use
to decrypt that ticket. The KRB_AP_ERR_NOKEY error code is returned if the server doesn’t have the
proper key to decipher the ticket.

The ticket is decrypted using the version of the server’s key specified by the ticket. If the decryption
routines detect a modification of the ticket (each encryption system must provide safeguards to detect
modified ciphertext; see section 6), the KRB_AP_ERR_BAD_INTEGRITY error is returned (chances are
good that different keys were used to encrypt and decrypt).

The authenticator is decrypted using the session key extracted from the decrypted ticket. If decryp-
tion shows it to have been modified, the KRB_AP_ERR_BAD_INTEGRITY error is returned. The name
and realm of the client from the ticket are compared against the same fields in the authenticator. If they
don’t match, the KRB_AP_ERR_BADMATCH error is returned (they might not match, for example, if the
wrong session key was used to encrypt the authenticator). The addresses in the ticket (if any) are then
searched for an address matching the operating-system reported address of the client. If no match is found
or the server insists on ticket addresses but none are present in the ticket, the KRB_AP_ERR_BADADDR
error is returned.

If the local (server) time and the client time in the authenticator differ by more than the allowable
clock skew (e.g., 5 minutes), the KRB_AP_ERR_SKEW error is returned. If the server name, along with
the client name, time and microsecond fields from the Authenticator match any recently-seen such tuples,
the KRB_AP_ERR_REPEAT error is returned11. The server must remember any authenticator presented
hhhhhhhhhhhhhhhhhh
9 Note that this can make applications based on unreliable transports difficult to code correctly, if the transport might
deliver duplicated messages. In such cases, a new authenticator must be generated for each retry.
10 This is used for user-to-user authentication as described in [6].
11 Note that the rejection here is restricted to authenticators from the same principal to the same server. Other client princi-
pals communicating with the same server principal should not be have their authenticators rejected if the time and mi-

Section 3.2.3. - 11 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

within the allowable clock skew, so that a replay attempt is guaranteed to fail. If a server loses track of any
authenticator presented within the allowable clock skew, it must reject all requests until the clock skew
interval has passed. This assures that any lost or re-played authenticators will fall outside the allowable
clock skew and can no longer be successfully replayed (If this is not done, an attacker could conceivably
record the ticket and authenticator sent over the network to a server, then disable the client’s host, pose as
the disabled host, and replay the ticket and authenticator to subvert the authentication.). If a sequence
number is provided in the authenticator, the server saves it for later use in processing KRB_SAFE and/or
KRB_PRIV messages. If a subkey is present, the server either saves it for later use or uses it to help gen-
erate its own choice for a subkey to be returned in a KRB_AP_REP message.

The server computes the age of the ticket: local (server) time minus the start time inside the Ticket.
If the start time is later than the current time by more than the allowable clock skew or if the INVALID flag
is set in the ticket, the KRB_AP_ERR_TKT_NYV error is returned. Otherwise, if the current time is later
than end time by more than the allowable clock skew, the KRB_AP_ERR_TKT_EXPIRED error is
returned.

If all these checks succeed without an error, the server is assured that the client possesses the creden-
tials of the principal named in the ticket and thus, the client has been authenticated to the server. See sec-
tion A.10 for pseudocode.

3.2.4. Generation of a KRB_AP_REP message

Typically, a client’s request will include both the authentication information and its initial request in
the same message, and the server need not explicitly reply to the KRB_AP_REQ. However, if mutual
authentication (not only authenticating the client to the server, but also the server to the client) is being per-
formed, the KRB_AP_REQ message will have MUTUAL-REQUIRED set in its ap-options field, and a
KRB_AP_REP message is required in response. As with the error message, this message may be encapsu-
lated in the application protocol if its "raw" form is not acceptable to the application’s protocol. The time-
stamp and microsecond field used in the reply must be the client’s timestamp and microsecond field (as
provided in the authenticator)12. If a sequence number is to be included, it should be randomly chosen as
described above for the authenticator. A subkey may be included if the server desires to negotiate a dif-
ferent subkey. The KRB_AP_REP message is encrypted in the session key extracted from the ticket. See
section A.11 for pseudocode.

3.2.5. Receipt of KRB_AP_REP message

If a KRB_AP_REP message is returned, the client uses the session key from the credentials obtained
for the server13 to decrypt the message, and verifies that the timestamp and microsecond fields match those
in the Authenticator it sent to the server. If they match, then the client is assured that the server is genuine.
The sequence number and subkey (if present) are retained for later use. See section A.12 for pseudocode.

3.2.6. Using the encryption key

After the KRB_AP_REQ/KRB_AP_REP exchange has occurred, the client and server share an
encryption key which can be used by the application. The "true session key" to be used for KRB_PRIV,
KRB_SAFE, or other application-specific uses may be chosen by the application based on the subkeys in
the KRB_AP_REP message and the authenticator14. In some cases, the use of this session key will be
hhhhhhhhhhhhhhhhhh
crosecond fields happen to match some other client’s authenticator.
12 In the Kerberos version 4 protocol, the timestamp in the reply was the client’s timestamp plus one. This is not necessary
in version 5 because version 5 messages are formatted in such a way that it is not possible to create the reply by judicious
message surgery (even in encrypted form) without knowledge of the appropriate encryption keys.
13 Note that for encrypting the KRB_AP_REP message, the sub-session key is not used, even if present in the Authentica-
tor.
14 Implementations of the protocol may wish to provide routines to choose subkeys based on session keys and random
numbers and to orchestrate a negotiated key to be returned in the KRB_AP_REP message.

Section 3.2.6. - 12 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

implicit in the protocol; in others the method of use must be chosen from a several alternatives. We leave
the protocol negotiations of how to use the key (e.g. selecting an encryption or checksum type) to the
application programmer; the Kerberos protocol does not constrain the implementation options.

With both the one-way and mutual authentication exchanges, the peers should take care not to send
sensitive information to each other without proper assurances. In particular, applications that require
privacy or integrity should use the KRB_AP_REP or KRB_ERROR responses from the server to client to
assure both client and server of their peer’s identity. If an application protocol requires privacy of its mes-
sages, it can use the KRB_PRIV message (section 3.5). The KRB_SAFE message (section 3.4) can be
used to assure integrity.

3.3. The Ticket-Granting Service (TGS) Exchange

Summary
Message direction Message type Section
1. Client to Kerberos KRB_TGS_REQ 5.4.1
2. Kerberos to client KRB_TGS_REP or 5.4.2

KRB_ERROR 5.9.1

The TGS exchange between a client and the Kerberos Ticket-Granting Server is initiated by a client
when it wishes to obtain authentication credentials for a given server (which might be registered in a re-
mote realm), when it wishes to renew or validate an existing ticket, or when it wishes to obtain a proxy
ticket. In the first case, the client must already have acquired a ticket for the Ticket-Granting Service using
the AS exchange (the ticket-granting ticket is usually obtained when a client initially authenticates to the
system, such as when a user logs in). The message format for the TGS exchange is almost identical to that
for the AS exchange. The primary difference is that encryption and decryption in the TGS exchange does
not take place under the client’s key. Instead, the session key from the ticket-granting ticket or renewable
ticket, or sub-session key from an Authenticator is used. As is the case for all application servers, expired
tickets are not accepted by the TGS, so once a renewable or ticket-granting ticket expires, the client must
use a separate exchange to obtain valid tickets.

The TGS exchange consists of two messages: A request (KRB_TGS_REQ) from the client to the
Kerberos Ticket-Granting Server, and a reply (KRB_TGS_REP or KRB_ERROR). The KRB_TGS_REQ
message includes information authenticating the client plus a request for credentials. The authentication
information consists of the authentication header (KRB_AP_REQ) which includes the client’s previously
obtained ticket-granting, renewable, or invalid ticket. In the ticket-granting ticket and proxy cases, the
request may include one or more of: a list of network addresses, a collection of typed authorization data to
be sealed in the ticket for authorization use by the application server, or additional tickets (the use of which
are described later). The TGS reply (KRB_TGS_REP) contains the requested credentials, encrypted in the
session key from the ticket-granting ticket or renewable ticket, or if present, in the sub-session key from the
Authenticator (part of the authentication header). The KRB_ERROR message contains an error code and
text explaining what went wrong. The KRB_ERROR message is not encrypted. The KRB_TGS_REP
message contains information which can be used to detect replays, and to associate it with the message to
which it replies. The KRB_ERROR message also contains information which can be used to associate it
with the message to which it replies, but the lack of encryption in the KRB_ERROR message precludes the
ability to detect replays or fabrications of such messages.

3.3.1. Generation of KRB_TGS_REQ message

Before sending a request to the ticket-granting service, the client must determine in which realm the
application server is registered15. If the client does not already possess a ticket-granting ticket for the
hhhhhhhhhhhhhhhhhh
15 This can be accomplished in several ways. It might be known beforehand (since the realm is part of the principal
identifier), or it might be stored in a nameserver. Presently, however, this information is obtained from a configuration file.
If the realm to be used is obtained from a nameserver, there is a danger of being spoofed if the nameservice providing the
realm name is not authenticated. This might result in the use of a realm which has been compromised, and would result in
an attacker’s ability to compromise the authentication of the application server to the client.

Section 3.3.1. - 13 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

appropriate realm, then one must be obtained. This is first attempted by requesting a ticket-granting ticket
for the destination realm from the local Kerberos server (using the KRB_TGS_REQ message recursively).
The Kerberos server may return a TGT for the desired realm in which case one can proceed. Alternatively,
the Kerberos server may return a TGT for a realm which is "closer" to the desired realm (further along the
standard hierarchical path), in which case this step must be repeated with a Kerberos server in the realm
specified in the returned TGT. If neither are returned, then the request must be retried with a Kerberos
server for a realm higher in the hierarchy. This request will itself require a ticket-granting ticket for the
higher realm which must be obtained by recursively applying these directions.

Once the client obtains a ticket-granting ticket for the appropriate realm, it determines which Ker-
beros servers serve that realm, and contacts one. The list might be obtained through a configuration file or
network service; as long as the secret keys exchanged by realms are kept secret, only denial of service
results from a false Kerberos server.

As in the AS exchange, the client may specify a number of options in the KRB_TGS_REQ message.
The client prepares the KRB_TGS_REQ message, providing an authentication header as an element of the
padata field, and including the same fields as used in the KRB_AS_REQ message along with several
optional fields: the enc-authorization-data field for application server use and additional tickets required
by some options.

In preparing the authentication header, the client can select a sub-session key under which the
response from the Kerberos server will be encrypted16. If the sub-session key is not specified, the session
key from the ticket-granting ticket will be used. If the enc-authorization-data is present, it must be
encrypted in the sub-session key, if present, from the authenticator portion of the authentication header, or
if not present in the session key from the ticket-granting ticket.

Once prepared, the message is sent to a Kerberos server for the destination realm. See section A.5
for pseudocode.

3.3.2. Receipt of KRB_TGS_REQ message

The KRB_TGS_REQ message is processed in a manner similar to the KRB_AS_REQ message, but
there are many additional checks to be performed. First, the Kerberos server must determine which server
the accompanying ticket is for and it must select the appropriate key to decrypt it. For a normal
KRB_TGS_REQ message, it will be for the ticket granting service, and the TGS’s key will be used. If the
TGT was issued by another realm, then the appropriate inter-realm key must be used. If the accompanying
ticket is not a ticket granting ticket for the current realm, but is for an application server in the current
realm, the RENEW, VALIDATE, or PROXY options are specified in the request, and the server for which
a ticket is requested is the server named in the accompanying ticket, then the KDC will decrypt the ticket in
the authentication header using the key of the server for which it was issued. If no ticket can be found in
the padata field, the KDC_ERR_PADATA_TYPE_NOSUPP error is returned.

Once the accompanying ticket has been decrypted, the user-supplied checksum in the Authenticator
must be verified against the contents of the request, and the message rejected if the checksums do not
match (with an error code of KRB_AP_ERR_MODIFIED) or if the checksum is not keyed or not
collision-proof (with an error code of KRB_AP_ERR_INAPP_CKSUM). If the checksum type is not sup-
ported, the KDC_ERR_SUMTYPE_NOSUPP error is returned. If the authorization-data are present,
they are decrypted using the sub-session key from the Authenticator.

If any of the decryptions indicate failed integrity checks, the KRB_AP_ERR_BAD_INTEGRITY
error is returned.

hhhhhhhhhhhhhhhhhh
16 If the client selects a sub-session key, care must be taken to ensure the randomness of the selected sub-session key. One
approach would be to generate a random number and XOR it with the session key from the ticket-granting ticket.

Section 3.3.2. - 14 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

3.3.3. Generation of KRB_TGS_REP message

The KRB_TGS_REP message shares its format with the KRB_AS_REP (KRB_KDC_REP), but
with its type field set to KRB_TGS_REP. The detailed specification is in section 5.4.2.

The response will include a ticket for the requested server. The Kerberos database is queried to
retrieve the record for the requested server (including the key with which the ticket will be encrypted). If
the request is for a ticket granting ticket for a remote realm, and if no key is shared with the requested
realm, then the Kerberos server will select the realm "closest" to the requested realm with which it does
share a key, and use that realm instead. This is the only case where the response from the KDC will be for
a different server than that requested by the client.

By default, the address field, the client’s name and realm, the list of transited realms, the time of ini-
tial authentication, the expiration time, and the authorization data of the newly-issued ticket will be copied
from the ticket-granting ticket (TGT) or renewable ticket. If the transited field needs to be updated, but the
transited type is not supported, the KDC_ERR_TRTYPE_NOSUPP error is returned.

If the request specifies an endtime, then the endtime of the new ticket is set to the minimum of (a)
that request, (b) the endtime from the TGT, and (c) the starttime of the TGT plus the minimum of the max-
imum life for the application server and the maximum life for the local realm (the maximum life for the
requesting principal was already applied when the TGT was issued). If the new ticket is to be a renewal,
then the endtime above is replaced by the minimum of (a) the value of the renew_till field of the ticket and
(b) the starttime for the new ticket plus the life (endtime-starttime) of the old ticket.

If the FORWARDED option has been requested, then the resulting ticket will contain the addresses
specified by the client. This option will only be honored if the FORWARDABLE flag is set in the TGT.
The PROXY option is similar; the resulting ticket will contain the addresses specified by the client. It will
be honored only if the PROXIABLE flag in the TGT is set. The PROXY option will not be honored on
requests for additional ticket-granting tickets.

If the requested start time is absent or indicates a time in the past, then the start time of the ticket is
set to the authentication server’s current time. If it indicates a time in the future, but the POSTDATED
option has not been specified or the MAY-POSTDATE flag is not set in the TGT, then the error
KDC_ERR_CANNOT_POSTDATE is returned. Otherwise, if the ticket-granting ticket has the MAY-
POSTDATE flag set, then the resulting ticket will be postdated and the requested starttime is checked
against the policy of the local realm. If acceptable, the ticket’s start time is set as requested, and the
INVALID flag is set. The postdated ticket must be validated before use by presenting it to the KDC after
the starttime has been reached. However, in no case may the starttime, endtime, or renew-till time of a
newly-issued postdated ticket extend beyond the renew-till time of the ticket-granting ticket.

If the ENC-TKT-IN-SKEY option has been specified and an additional ticket has been included in
the request, the KDC will decrypt the additional ticket using the key for the server to which the additional
ticket was issued and verify that it is a ticket-granting ticket. If the name of the requested server is missing
from the request, the name of the client in the additional ticket will be used. Otherwise the name of the
requested server will be compared to the name of the client in the additional ticket and if different, the
request will be rejected. If the request succeeds, the session key from the additional ticket will be used to
encrypt the new ticket that is issued instead of using the key of the server for which the new ticket will be
used17.

If the name of the server in the ticket that is presented to the KDC as part of the authentication
header is not that of the ticket-granting server itself, and the server is registered in the realm of the KDC, If
the RENEW option is requested, then the KDC will verify that the RENEWABLE flag is set in the ticket
and that the renew_till time is still in the future. If the VALIDATE option is rqeuested, the KDC will
check that the starttime has passed and the INVALID flag is set. If the PROXY option is requested, then
the KDC will check that the PROXIABLE flag is set in the ticket. If the tests succeed, the KDC will issue
the appropriate new ticket.
hhhhhhhhhhhhhhhhhh
17 This allows easy implementation of user-to-user authentication [6], which uses ticket-granting ticket session keys in lieu
of secret server keys in situations where such secret keys could be easily compromised.

Section 3.3.3. - 15 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

Whenever a request is made to the ticket-granting server, the presented ticket(s) is(are) checked
against a hot-list of tickets which have been canceled. This hot-list might be implemented by storing a
range of issue dates for "suspect tickets"; if a presented ticket had an authtime in that range, it would be
rejected. In this way, a stolen ticket-granting ticket or renewable ticket cannot be used to gain additional
tickets (renewals or otherwise) once the theft has been reported. Any normal ticket obtained before it was
reported stolen will still be valid (because they require no interaction with the KDC), but only until their
normal expiration time.

The ciphertext part of the response in the KRB_TGS_REP message is encrypted in the sub-session
key from the Authenticator, if present, or the session key key from the ticket-granting ticket. It is not
encrypted using the client’s secret key. Furthermore, the client’s key’s expiration date and the key version
number fields are left out since these values are stored along with the client’s database record, and that
record is not needed to satisfy a request based on a ticket-granting ticket. See section A.6 for pseudocode.

3.3.3.1. Encoding the transited field

If the identity of the server in the TGT that is presented to the KDC as part of the authentication
header is that of the ticket-granting service, but the TGT was issued from another realm, the KDC will look
up the inter-realm key shared with that realm and use that key to decrypt the ticket. If the ticket is valid,
then the KDC< will honor the request, subject to the constraints outlined above in the section describing
the AS exchange. The realm part of the client’s identity will be taken from the ticket-granting ticket. The
name of the realm that issued the ticket-granting ticket will be added to the transited field of the ticket to be
issued. This is accomplished by reading the transited field from the ticket-granting ticket (which is treated
as an unordered set of realm names), adding the new realm to the set, then constructing and writing out its
encoded (shorthand) form (this may involve a rearrangement of the existing encoding).

Note that the ticket-granting service does not add the name of its own realm. Instead, its responsibil-
ity is to add the name of the previous realm. This prevents a malicious Kerberos server from intentionally
leaving out its own name (it could, however, omit other realms’ names).

The names of neither the local realm nor the principal’s realm are to be included in the transited
field. They appear elsewhere in the ticket and both are known to have taken part in authenticating the prin-
cipal. Since the endpoints are not included, both local and single-hop inter-realm authentication result in a
transited field that is empty.

Because the name of each realm transited is added to this field, it might potentially be very long. To
decrease the length of this field, its contents are encoded. The initially supported encoding is optimized for
the normal case of inter-realm communication: a hierarchical arrangement of realms using either domain or
X.500 style realm names. This encoding (called DOMAIN-X500-COMPRESS) is now described.

Realm names in the transited field are separated by a ",". The ",", "\", trailing "."s, and leading
spaces (" ") are special characters, and if they are part of a realm name, they must be quoted in the transited
field by preceding them with a "\".

A realm name ending with a "." is interpreted as being prepended to the previous realm. For exam-
ple, we can encode traversal of EDU, MIT.EDU, ATHENA.MIT.EDU, WASHINGTON.EDU, and
CS.WASHINGTON.EDU as:

"EDU,MIT.,ATHENA.,WASHINGTON.EDU,CS.".

Note that if ATHENA.MIT.EDU, or CS.WASHINGTON.EDU were endpoints, that they would not be included in
this field, and we would have:

"EDU,MIT.,WASHINGTON.EDU"

Section 3.3.3.1. - 16 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

A realm name beginning with a "/" is interpreted as being appended to the previous realm18. If it is to
stand by itself, then it should be preceded by a space (" "). For example, we can encode traversal of
/COM/HP/APOLLO, /COM/HP, /COM, and /COM/DEC as:

"/COM,/HP,/APOLLO, /COM/DEC".

Like the example above, if /COM/HP/APOLLO and /COM/DEC are endpoints, they they would not be included
in this field, and we would have:

"/COM,/HP"

A null subfield preceding or following a "," indicates that all realms between the previous realm and
the next realm have been traversed19. Thus, "," means that all realms along the path between the client and
the server have been traversed. ",EDU, /COM," means that that all realms from the client’s realm up to EDU

(in a domain style hierarchy) have been traversed, and that everything from /COM down to the server’s
realm in an X.500 style has also been traversed. This could occur if the EDU realm in one hierarchy shares
an inter-realm key directly with the /COM realm in another hierarchy.

3.3.4. Receipt of KRB_TGS_REP message

When the KRB_TGS_REP is received by the client, it is processed in the same manner as the
KRB_AS_REP processing described above. The primary difference is that the ciphertext part of the
response must be decrypted using the session key from the ticket-granting ticket rather than the client’s
secret key. See section A.7 for pseudocode.

3.4. The KRB_SAFE Exchange
The KRB_SAFE message may be used by clients requiring the ability to detect modifications of mes-

sages they exchange. It achieves this by including a keyed collision-proof checksum of the user data and
some control information. The checksum is keyed with an encryption key (usually the last key negotiated
via subkeys, or the session key if no negotiation has occured).

3.4.1. Generation of a KRB_SAFE message

When an application wishes to send a KRB_SAFE message, it collects its data and the appropriate control
information and computes a checksum over them. The checksum algorithm should be some sort of keyed
one-way hash function (such as the RSA-MD5-DES checksum algorithm specified in section 6.4.5, or the
DES MAC), generated using the sub-session key if present, or the session key. Different algorithms may
be selected by changing the checksum type in the message. Unkeyed or non-collision-proof checksums
are not suitable for this use.

The control information for the KRB_SAFE message includes both a timestamp and a sequence
number. The designer of an application using the KRB_SAFE message must choose at least one of the two
mechanisms. This choice should be based on the needs of the application protocol.

Sequence numbers are useful when all messages sent will be received by one’s peer. Connection
state is presently required to maintain the session key, so maintaining the next sequence number should not
present an additional problem.

If the application protocol is expected to tolerate lost messages without them being resent, the use of
the timestamp is the appropriate replay detection mechanism. Using timestamps is also the appropriate
mechanism for multi-cast protocols where all of one’s peers share a common sub-session key, but some
messages will be sent to a subset of one’s peers.

hhhhhhhhhhhhhhhhhh
18 For the purpose of appending, the realm preceding the first listed realm is considered to be the null realm ("").
19 For the purpose of interpreting null subfields, the client’s realm is considered to precede those in the transited field, and
the server’s realm is considered to follow them.

Section 3.4.1. - 17 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

After computing the checksum, the client then transmits the information and checksum to the reci-
pient in the message format specified in section 5.6.1.

3.4.2. Receipt of KRB_SAFE message

When an application receives a KRB_SAFE message, it verifies it as follows. If any error occurs, an error
code is reported for use by the application.

The message is first checked by verifying that the protocol version and type fields match the current
version and KRB_SAFE, respectively. A mismatch generates a KRB_AP_ERR_BADVERSION or
KRB_AP_ERR_MSG_TYPE error. The application verifies that the checksum used is a collision-proof
keyed checksum, and if it is not, a KRB_AP_ERR_INAPP_CKSUM error is generated. The recipient
verifies that the operating system’s report of the sender’s address matches the sender’s address in the mes-
sage, and (if a recipient address is specified or the recipient requires an address) that one of the recipient’s
addresses appears as the recipient’s address in the message. A failed match for either case generates a
KRB_AP_ERR_BADADDR error. Then the timestamp and usec and/or the sequence number fields are
checked. If timestamp and usec are expected and not present, or they are present but not current, the
KRB_AP_ERR_SKEW error is generated. If the server name, along with the client name, time and
microsecond fields from the Authenticator match any recently-seen such tuples, the
KRB_AP_ERR_REPEAT error is generated. If an incorrect sequence number is included, or a sequence
number is expected but not present, the KRB_AP_ERR_BADORDER error is generated. If neither a time-
stamp and usec or a sequence number is present, a KRB_AP_ERR_MODIFIED error is generated. Finally,
the checksum is computed over the data and control information, and if it doesn’t match the received
checksum, a KRB_AP_ERR_MODIFIED error is generated.

If all the checks succeed, the application is assured that the message was generated by its peer and
was not modified in transit.

3.5. The KRB_PRIV Exchange
The KRB_PRIV message may be used by clients requiring confidentiality and the ability to detect

modifications of exchanged messages. It achieves this by encrypting the messages and adding control
information.

3.5.1. Generation of a KRB_PRIV message

When an application wishes to send a KRB_PRIV message, it collects its data and the appropriate control
information (specified in section 5.7.1) and encrypts them under an encryption key (usually the last key
negotiated via subkeys, or the session key if no negotiation has occured). As part of the control informa-
tion, the client must choose to use either a timestamp or a sequence number (or both); see the discussion in
section 3.4.1 for guidelines on which to use. After the user data and control information are encrypted, the
client transmits the ciphertext and some "envelope" information to the recipient.

3.5.2. Receipt of KRB_PRIV message

When an application receives a KRB_PRIV message, it verifies it as follows. If any error occurs, an error
code is reported for use by the application.

The message is first checked by verifying that the protocol version and type fields match the current
version and KRB_PRIV, respectively. A mismatch generates a KRB_AP_ERR_BADVERSION or
KRB_AP_ERR_MSG_TYPE error. The application then decrypts the ciphertext and processes the resul-
tant plaintext. If decryption shows the data to have been modified, a KRB_AP_ERR_BAD_INTEGRITY
error is generated. The recipient verifies that the operating system’s report of the sender’s address matches
the sender’s address in the message, and (if a recipient address is specified or the recipient requires an
address) that one of the recipient’s addresses appears as the recipient’s address in the message. A failed
match for either case generates a KRB_AP_ERR_BADADDR error. Then the timestamp and usec and/or
the sequence number fields are checked. If timestamp and usec are expected and not present, or they are
present but not current, the KRB_AP_ERR_SKEW error is generated. If the server name, along with the
client name, time and microsecond fields from the Authenticator match any recently-seen such tuples, the

Section 3.5.2. - 18 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

KRB_AP_ERR_REPEAT error is generated. If an incorrect sequence number is included, or a sequence
number is expected but not present, the KRB_AP_ERR_BADORDER error is generated. If neither a time-
stamp and usec or a sequence number is present, a KRB_AP_ERR_MODIFIED error is generated.

If all the checks succeed, the application can assume the message was generated by its peer, and was
securely transmitted (without intruders able to see the unencrypted contents).

3.6. The KRB_CRED Exchange
The KRB_CRED message may be used by clients requiring the ability to send Kerberos credentials

from one host to another. It achieves this by sending the tickets together with encrypted data containing
the session keys and other information associated with the tickets.

3.6.1. Generation of a KRB_CRED message

When an application wishes to send a KRB_CRED message it first (using the KRB_TGS exchange)
obtains credentials to be sent to the remote host. It then constructs a KRB_CRED message using the ticket
or tickets so obtained, placing the session key needed to use each ticket in the key field of the correspond-
ing KrbCredInfo sequence of the encrypted part of the the KRB_CRED message.

Other information associated with each ticket and obtained during the KRB_TGS exchange is also
placed in the corresponding KrbCredInfo sequence in the encrypted part of the KRB_CRED message. The
current time and, if specifically required by the application the nonce, s-address, and r-address fields, are
placed in the encrypted part of the KRB_CRED message which is then encrypted under an encryption key
previosuly exchanged in the KRB_AP exchange (usually the last key negotiated via subkeys, or the session
key if no negotiation has occured).

3.6.2. Receipt of KRB_CRED message

When an application receives a KRB_CRED message, it verifies it. If any error occurs, an error code is
reported for use by the application. The message is verified by checking that the protocol version and type
fields match the current version and KRB_CRED, respectively. A mismatch generates a
KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE error. The application then decrypts the
ciphertext and processes the resultant plaintext. If decryption shows the data to have been modified, a
KRB_AP_ERR_BAD_INTEGRITY error is generated.

If present or required, the recipient verifies that the operating system’s report of the sender’s address
matches the sender’s address in the message, and that one of the recipient’s addresses appears as the
recipient’s address in the message. A failed match for either case generates a KRB_AP_ERR_BADADDR
error. The timestamp and usec fields (and the nonce field if required) are checked next. If the timestamp
and usec are not present, or they are present but not current, the KRB_AP_ERR_SKEW error is generated.

If all the checks succeed, the application stores each of the new tickets in its ticket cache together
with the session key and other information in the corresponding KrbCredInfo sequence from the encrypted
part of the KRB_CRED message.

Section 3.6.2. - 19 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

4. The Kerberos Database
The Kerberos server must have access to a database containing the principal identifiers and secret keys of
principals to be authenticated20.

4.1. Database contents
A database entry should contain at least the following fields:

Field Value

name Principal’s identifier
key Principal’s secret key
p_kvno Principal’s key version
max_life Maximum lifetime for Tickets
max_renewable_life Maximum total lifetime for renewable Tickets

The name field is an encoding of the principal’s identifier. The key field contains an encryption key. This
key is the principal’s secret key. (The key can be encrypted before storage under a Kerberos "master key"
to protect it in case the database is compromised but the master key is not. In that case, an extra field must
be added to indicate the master key version used, see below.) The p_kvno field is the key version number
of the principal’s secret key. The max_life field contains the maximum allowable lifetime (endtime - start-
time) for any Ticket issued for this principal. The max_renewable_life field contains the maximum allow-
able total lifetime for any renewable Ticket issued for this principal. (See section 3.1 for a description of
how these lifetimes are used in determining the lifetime of a given Ticket.)

A server may provide KDC service to several realms, as long as the database representation provides
a mechanism to distinguish between principal records with identifiers which differ only in the realm name.

When an application server’s key changes, if the change is routine (i.e. not the result of disclosure of
the old key), the old key should be retained by the server until all tickets that had been issued using that key
have expired. Because of this, it is possible for several keys to be active for a single principal. Ciphertext
encrypted in a principal’s key is always tagged with the version of the key that was used for encryption, to
help the recipient find the proper key for decryption.

When more than one key is active for a particular principal, the principal will have more than one
record in the Kerberos database. The keys and key version numbers will differ between the records (the
rest of the fields may or may not be the same). Whenever Kerberos issues a ticket, or responds to a request
for initial authentication, the most recent key (known by the Kerberos server) will be used for encryption.
This is the key with the highest key version number.

4.2. Additional fields
Project Athena’s KDC implementation uses additional fields in its database:

Field Value

K_kvno Kerberos’ key version
expiration Expiration date for entry
attributes Bit field of attributes
mod_date Timestamp of last modification
mod_name Modifying principal’s identifier

The K_kvno field indicates the key version of the Kerberos master key under which the principal’s secret
key is encrypted.
hhhhhhhhhhhhhhhhhh
20 The implementation of the Kerberos server need not combine the database and the server on the same machine; it is
feasible to store the principal database in, say, a network name service, as long as the entries stored therein are protected
from disclosure to and modification by unauthorized parties. However, we recommend against such strategies, as they can
make system management and threat analysis quite complex.

Section 4.2. - 20 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

After an entry’s expiration date has passed, the KDC will return an error to any client attempting to
gain tickets as or for the principal. (A database may want to maintain two expiration dates: one for the
principal, and one for the principal’s current key. This allows password aging to work independently of the
principal’s expiration date. However, due to the limited space in the responses, the KDC must combine the
key expiration and principal expiration date into a single value called "key_exp", which is used as a hint to
the user to take administrative action.)

The attributes field is a bitfield used to govern the operations involving the principal. This field
might be useful in conjunction with user registration procedures, for site-specific policy implementations
(Project Athena currently uses it for their user registration process controlled by the system-wide database
service, Moira. [7]), or to identify the "string to key" conversion algorithm used for a principal’s key21.
Other bits are used to indicate that certain ticket options should not be allowed in tickets encrypted under a
principal’s key (one bit each): Disallow issuing postdated tickets, disallow issuing forwardable tickets,
disallow issuing tickets based on TGT authentication, disallow issuing renewable tickets, disallow issuing
proxiable tickets, and disallow issuing tickets for which the principal is the server.

The mod_date field contains the time of last modification of the entry, and the mod_name field con-
tains the name of the principal which last modified the entry.

4.3. Frequently Changing Fields
Some KDC implementations may wish to maintain the last time that a request was made by a partic-

ular principal. Information that might be maintained includes the time of the last request, the time of the
last request for a ticket-granting ticket, the time of the last use of a ticket-granting ticket, or other times.
This information can then be returned to the user in the last-req field (see section 5.2).

Other frequently changing information that can be maintained is the latest expiration time for any
tickets that have been issued using each key. This field would be used to indicate how long old keys must
remain valid to allow the continued use of outstanding tickets.

4.4. Site Constants
The KDC implementation should have the following configurable constants or options, to allow an

administrator to make and enforce policy decisions:

g The minimum supported lifetime (used to determine whether the KDC_ERR_NEVER_VALID error
should be returned). This constant should reflect reasonable expectations of round-trip time to the
KDC, encryption/decryption time, and processing time by the client and target server, and it should
allow for a minimum "useful" lifetime.

g The maximum allowable total (renewable) lifetime of a ticket (renew_till - starttime).

g The maximum allowable lifetime of a ticket (endtime - starttime).

g Whether to allow the issue of tickets with empty address fields (including the ability to specify that
such tickets may only be issued if the request specifies some authorization_data).

g Whether proxiable, forwardable, renewable or post-datable tickets are to be issued.

5. Message Specifications
The following sections describe the exact contents and encoding of protocol messages and objects.

The ASN.1 base definitions are presented in the first subsection. The remaining subsections specify the
protocol objects (tickets and authenticators) and messages. Specification of encryption and checksum tech-
niques, and the fields related to them, appear in section 6.

hhhhhhhhhhhhhhhhhh
21 See the discussion of the padata field in section 5.4.2 for details on why this can be useful.

Section 5. - 21 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

5.1. ASN.1 Distinguished Encoding Representation
All uses of ASN.1 in Kerberos shall use the Distinguished Encoding Representation of the data ele-

ments as described in the X.509 specification, section 8.7 [8].

5.2. ASN.1 Base Definitions
The following ASN.1 base definitions are used in the rest of this section. Note that since the under-

score character (_) is not permitted in ASN.1 names, the hyphen (-) is used in its place for the purposes of
ASN.1 names.

Realm ::= GeneralString
PrincipalName ::= SEQUENCE {

name-type[0] INTEGER,
name-string[1] SEQUENCE OF GeneralString

}

Kerberos realms are encoded as GeneralStrings. Realms shall not contain a character with the code 0 (the
ASCII NUL). Most realms will usually consist of several components separated by periods (.), in the style
of Internet Domain Names, or separated by slashes (/) in the style of X.500 names. Acceptable forms for
realm names are specified in section 7. A PrincipalName is a typed sequence of components consisting of
the following sub-fields:

name-type This field specifies the type of name that follows. Pre-defined values for this field are specified
in section 7.2. The name-type should be treated as a hint. Ignoring the name type, no two
names can be the same (i.e. at least one of the components, or the realm, must be different).
This constraint may be eliminated in the future.

name-stringThis field encodes a sequence of components that form a name, each component encoded as a
GeneralString. Taken together, a PrincipalName and a Realm form a principal identifier.
Most PrincipalNames will have only a few components (typically one or two).

KerberosTime ::= GeneralizedTime
-- Specifying UTC time zone (Z)

The timestamps used in Kerberos are encoded as GeneralizedTimes. An encoding shall specify the
UTC time zone (Z) and shall not include any fractional portions of the seconds. It further shall not include
any separators. Example: The only valid format for UTC time 6 minutes, 27 seconds after 9 pm on 6
November 1985 is 19851106210627Z.

HostAddress ::= SEQUENCE {
addr-type[0] INTEGER,
address[1] OCTET STRING

}

HostAddresses ::= SEQUENCE OF SEQUENCE {
addr-type[0] INTEGER,
address[1] OCTET STRING

}

The host adddress encodings consists of two fields:

addr-type This field specifies the type of address that follows. Pre-defined values for this field are
specified in section 8.1.

address This field encodes a single address of type addr-type.

The two forms differ slightly. HostAddress contains exactly one address; HostAddresses contains a
sequence of possibly many addresses.

Section 5.2. - 22 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

AuthorizationData ::= SEQUENCE OF SEQUENCE {
ad-type[0] INTEGER,
ad-data[1] OCTET STRING

}

ad-data This field contains authorization data to be interpreted according to the value of the
corresponding ad-type field.

ad-type This field specifies the format for the ad-data subfield. All negative values are reserved for
local use. Non-negative values are reserved for registered use.

APOptions ::= BIT STRING {
reserved(0),
use-session-key(1),
mutual-required(2)

}

TicketFlags ::= BIT STRING {
reserved(0),
forwardable(1),
forwarded(2),
proxiable(3),
proxy(4),
may-postdate(5),
postdated(6),
invalid(7),
renewable(8),
initial(9),
pre-authent(10),
hw-authent(11)

}

KDCOptions ::= BIT STRING {
reserved(0),
forwardable(1),
forwarded(2),
proxiable(3),
proxy(4),
allow-postdate(5),
postdated(6),
unused7(7),
renewable(8),
unused9(9),
unused10(10),
unused11(11),
renewable-ok(27),
enc-tkt-in-skey(28),
renew(30),
validate(31)

}

LastReq ::= SEQUENCE OF SEQUENCE {
lr-type[0] INTEGER,
lr-value[1] KerberosTime

}

Section 5.2. - 23 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

lr-type This field indicates how the following lr-value field is to be interpreted. Negative values indi-
cate that the information pertains only to the responding server. Non-negative values pertain
to all servers for the realm.

If the lr-type field is zero (0), then no information is conveyed by the lr-value subfield. If the
absolute value of the lr-type field is one (1), then the lr-value subfield is the time of last initial
request for a TGT. If it is two (2), then the lr-value subfield is the time of last initial request.
If it is three (3), then the lr-value subfield is the time of issue for the newest ticket-granting
ticket used. If it is four (4), then the lr-value subfield is the time of the last renewal. If it is
five (5), then the lr-value subfield is the time of last request (of any type).

lr-value This field contains the time of the last request. The time must be interpreted according to the
contents of the accompanying lr-type subfield.

See section 6 for the definitions of Checksum, ChecksumType, EncryptedData, EncryptionKey,
EncryptionType, and KeyType.

5.3. Tickets and Authenticators
This section describes the format and encryption parameters for tickets and authenticators. When a

ticket or authenticator is included in a protocol message it is treated as an opaque object.

5.3.1. Tickets

A ticket is a record that helps a client authenticate to a service. A Ticket contains the following
information:

Ticket ::= [APPLICATION 1] SEQUENCE {
tkt-vno[0] INTEGER,
realm[1] Realm,
sname[2] PrincipalName,
enc-part[3] EncryptedData

}
-- Encrypted part of ticket
EncTicketPart ::= [APPLICATION 3] SEQUENCE {

flags[0] TicketFlags,
key[1] EncryptionKey,
crealm[2] Realm,
cname[3] PrincipalName,
transited[4] TransitedEncoding,
authtime[5] KerberosTime,
starttime[6] KerberosTime OPTIONAL,
endtime[7] KerberosTime,
renew-till[8] KerberosTime OPTIONAL,
caddr[9] HostAddresses OPTIONAL,
authorization-data[10] AuthorizationData OPTIONAL

}
-- encoded Transited field
TransitedEncoding ::= SEQUENCE {

tr-type[0] INTEGER, -- must be registered
contents[1] OCTET STRING

}

The encoding of EncTicketPart is encrypted in the key shared by Kerberos and the end server (the
server’s secret key). See section 6 for the format of the ciphertext.

Section 5.3.1. - 24 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

tkt-vno This field specifies the version number for the ticket format. This document describes version
number 5.

realm This field specifies the realm that issued a ticket. It also serves to identify the realm part of the
server’s principal identifier. Since a Kerberos server can only issue tickets for servers within
its realm, the two will always be identical.

sname This field specifies the name part of the server’s identity.

enc-part This field holds the encrypted encoding of the EncTicketPart sequence.

flags This field indicates which of various options were used or requested when the ticket was
issued. It is a bit-field, where the selected options are indicated by the bit being set (1), and the
unselected options and reserved fields being reset (0). Bit 0 is the most significant bit. The
encoding of the bits is specified in section 5.2. The flags are described in more detail above in
section 2. The meanings of the flags are:

Bit(s) Name Description

0 RESERVED Reserved for future expansion of this field.

1 FORWARDABLE The FORWARDABLE flag is normally only interpreted by the TGS,
and can be ignored by end servers. When set, this flag tells the ticket-
granting server that it is OK to issue a new ticket-granting ticket with a
different network address based on the presented ticket.

2 FORWARDED When set, this flag indicates that the ticket has either been forwarded or
was issued based on authentication involving a forwarded ticket-
granting ticket.

3 PROXIABLE The PROXIABLE flag is normally only interpreted by the TGS, and
can be ignored by end servers. The PROXIABLE flag has an interpre-
tation identical to that of the FORWARDABLE flag, except that the
PROXIABLE flag tells the ticket-granting server that only non-ticket-
granting tickets may be issued with different network addresses.

4 PROXY When set, this flag indicates that a ticket is a proxy.

5 MAY-POSTDATE The MAY-POSTDATE flag is normally only interpreted by the TGS,
and can be ignored by end servers. This flag tells the ticket-granting
server that a postdated ticket may be issued based on this ticket-
granting ticket.

6 POSTDATED This flag indicates that this ticket has been postdated. The end-service
can check the authtime field to see when the original authentication
occurred.

7 INVALID This flag indicates that a ticket is invalid, and it must be validated by
the KDC before use. Application servers must reject tickets which
have this flag set.

Section 5.3.1. - 25 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

8 RENEWABLE The RENEWABLE flag is normally only interpreted by the TGS, and
can usually be ignored by end servers (some particularly careful
servers may wish to disallow renewable tickets). A renewable ticket
can be used to obtain a replacement ticket that expires at a later date.

9 INITIAL This flag indicates that this ticket was issued using the AS protocol, and
not issued based on a ticket-granting ticket.

10 PRE-AUTHENT This flag indicates that during initial authentication, the client was
authenticated by the KDC before a ticket was issued. The strength of
the pre-authentication method is not indicated, but is acceptable to the
KDC.

11 HW-AUTHENT This flag indicates that the protocol employed for initial authentication
required the use of hardware expected to be possessed solely by the
named client. The hardware authentication method is selected by the
KDC and the strength of the method is not indicated.

12-31 RESERVED Reserved for future use.

key This field exists in the ticket and the KDC response and is used to pass the session key from
Kerberos to the application server and the client. The field’s encoding is described in section
6.2.

crealm This field contains the name of the realm in which the client is registered and in which initial
authentication took place.

cname This field contains the name part of the client’s principal identifier.

transited This field lists the names of the Kerberos realms that took part in authenticating the user to
whom this ticket was issued. It does not specify the order in which the realms were transited.
See section 3.3.3.1 for details on how this field encodes the traversed realms.

authtime This field indicates the time of initial authentication for the named principal. It is the time of
issue for the original ticket on which this ticket is based. It is included in the ticket to provide
additional information to the end service, and to provide the necessary information for imple-
mentation of a ‘hot list’ service at the KDC. An end service that is particularly paranoid could
refuse to accept tickets for which the initial authentication occurred "too far" in the past.

This field is also returned as part of the response from the KDC. When returned as part of the
response to initial authentication (KRB_AS_REP), this is the current time on the Kerberos
server22.

starttime This field in the ticket specifies the time after which the ticket is valid. Together with end-
time, this field specifies the life of the ticket. If it is absent from the ticket, its value should be
treated as that of the authtime field.

endtime This field contains the time after which the ticket will not be honored (its expiration time).
Note that individual services may place their own limits on the life of a ticket and may reject

hhhhhhhhhhhhhhhhhh
22 It is NOT recommended that this time value be used to adjust the workstation’s clock since the workstation cannot reli-
ably determine that such a KRB_AS_REP actually came from the proper KDC in a timely manner.

Section 5.3.1. - 26 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

tickets which have not yet expired. As such, this is really an upper bound on the expiration
time for the ticket.

renew-till This field is only present in tickets that have the RENEWABLE flag set in the flags field. It
indicates the maximum endtime that may be included in a renewal. It can be thought of as the
absolute expiration time for the ticket, including all renewals.

caddr This field in a ticket contains zero (if omitted) or more (if present) host addresses. These are
the addresses from which the ticket can be used. If there are no addresses, the ticket can be
used from any location. The decision by the KDC to issue or by the end server to accept
zero-address tickets is a policy decision and is left to the Kerberos and end-service administra-
tors; they may refuse to issue or accept such tickets. The suggested and default policy, how-
ever, is that such tickets will only be issued or accepted when additional information that can
be used to restrict the use of the ticket is included in the authorization_data field. Such a ticket
is a capability.

Network addresses are included in the ticket to make it harder for an attacker to use stolen
credentials. Because the session key is not sent over the network in cleartext, credentials can’t
be stolen simply by listening to the network; an attacker has to gain access to the session key
(perhaps through operating system security breaches or a careless user’s unattended session) to
make use of stolen tickets.

It is important to note that the network address from which a connection is received cannot be
reliably determined. Even if it could be, an attacker who has compromised the client’s works-
tation could use the credentials from there. Including the network addresses only makes it
more difficult, not impossible, for an attacker to walk off with stolen credentials and then use
them from a "safe" location.

authorization-data
The authorization-data field is used to pass authorization data from the principal on whose
behalf a ticket was issued to the application service. If no authorization data is included, this
field will be left out. The data in this field are specific to the end service. It is expected that
the field will contain the names of service specific objects, and the rights to those objects. The
format for this field is described in section 5.2. Although Kerberos is not concerned with the
format of the contents of the subfields, it does carry type information (ad-type).

By using the authorization_data field, a principal is able to issue a proxy that is valid for a
specific purpose. For example, a client wishing to print a file can obtain a file server proxy to
be passed to the print server. By specifying the name of the file in the authorization_data
field, the file server knows that the print server can only use the client’s rights when accessing
the particular file to be printed.

It is interesting to note that if one specifies the authorization-data field of a proxy and leaves
the host addresses blank, the resulting ticket and session key can be treated as a capability.
See [9] for some suggested uses of this field.

The authorization-data field is optional and does not have to be included in a ticket.

5.3.2. Authenticators

An authenticator is a record sent with a ticket to a server to certify the client’s knowledge of the
encryption key in the ticket, to help the server detect replays, and to help choose a "true session key" to use
with the particular session. The encoding is encrypted in the ticket’s session key shared by the client and
the server:

Section 5.3.2. - 27 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

-- Unencrypted authenticator
Authenticator ::= [APPLICATION 2] SEQUENCE {

authenticator-vno[0] INTEGER,
crealm[1] Realm,
cname[2] PrincipalName,
cksum[3] Checksum OPTIONAL,
cusec[4] INTEGER,
ctime[5] KerberosTime,
subkey[6] EncryptionKey OPTIONAL,
seq-number[7] INTEGER OPTIONAL,
authorization-data[8] AuthorizationData OPTIONAL

}

authenticator-vno
This field specifies the version number for the format of the authenticator. This document
specifies version 5.

crealm and cname
These fields are the same as those described for the ticket in section 5.3.1.

cksum This field contains a checksum of the the application data that accompanies the
KRB_AP_REQ.

cusec This field contains the microsecond part of the client’s timestamp. Its value (before encryp-
tion) ranges from 0 to 999999. It often appears along with ctime. The two fields are used
together to specify a reasonably accurate timestamp.

ctime This field contains the current time on the client’s host.

subkey This field contains the client’s choice for an encryption key which is to be used to protect this
specific application session. Unless an application specifies otherwise, if this field is left out
the session key from the ticket will be used.

seq-numberThis optional field includes the initial sequence number to be used by the KRB_PRIV or
KRB_SAFE messages when sequence numbers are used to detect replays (It may also be used
by application specific messages). When included in the authenticator this field specifies the
initial sequence number for messages from the client to the server. When included in the AP-
REP message, the initial sequence number is that for messages from the server to the client.
When used in KRB_PRIV or KRB_SAFE messages, it is incremented by one after each mes-
sage is sent.

For sequence numbers to adequately support the detection of replays they should be non-
repeating, even across connection boundaries. The initial sequence number should be random
and uniformly distributed across the full space of possible sequence numbers, so that it cannot
be guessed by an attacker and so that it and the successive sequence numbers do not repeat
other sequences.

authorization-data
This field is the same as described for the ticket in section 5.3.1. It is optional and will only
appear when additional restrictions are to be placed on the use of a ticket, beyond those carried
in the ticket itself.

Section 5.3.2. - 28 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

5.4. Specifications for the AS and TGS exchanges
This section specifies the format of the messages used in exchange between the client and the Ker-

beros server. The format of possible error messages appears in section 5.9.1.

5.4.1. KRB_KDC_REQ definition

The KRB_KDC_REQ message has no type of its own. Instead, its type is one of KRB_AS_REQ or
KRB_TGS_REQ depending on whether the request is for an initial ticket or an additional ticket. In either
case, the message is sent from the client to the Authentication Server to request credentials for a service.

The message fields are:

AS-REQ ::= [APPLICATION 10] KDC-REQ
TGS-REQ ::= [APPLICATION 12] KDC-REQ

KDC-REQ ::= SEQUENCE {
pvno[1] INTEGER,
msg-type[2] INTEGER,
padata[3] SEQUENCE OF PA-DATA OPTIONAL,
req-body[4] KDC-REQ-BODY

}

PA-DATA ::= SEQUENCE {
padata-type[1] INTEGER,
padata-value[2] OCTET STRING,

-- might be encoded AP-REQ
}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options[0] KDCOptions,
cname[1] PrincipalName OPTIONAL,

-- Used only in AS-REQ
realm[2] Realm, -- Server’s realm

-- Also client’s in AS-REQ
sname[3] PrincipalName OPTIONAL,
from[4] KerberosTime OPTIONAL,
till[5] KerberosTime,
rtime[6] KerberosTime OPTIONAL,
nonce[7] INTEGER,
etype[8] SEQUENCE OF INTEGER, -- EncryptionType,

-- in preference order
addresses[9] HostAddresses OPTIONAL,
enc-authorization-data[10] EncryptedData OPTIONAL,

-- Encrypted AuthorizationData encoding
additional-tickets[11] SEQUENCE OF Ticket OPTIONAL

}

The fields in this message are:

pvno This field is included in each message, and specifies the protocol version number. This docu-
ment specifies protocol version 5.

msg-type This field indicates the type of a protocol message. It will almost always be the same as the
application identifier associated with a message. It is included to make the identifier more
readily accessible to the application. For the KDC-REQ message, this type will be
KRB_AS_REQ or KRB_TGS_REQ.

Section 5.4.1. - 29 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

padata The padata (pre-authentication data) field contains a sequence of authentication information
which may be needed before credentials can be issued or decrypted. In the case of requests for
additional tickets (KRB_TGS_REQ), this field will include an element with padata-type of
PA-TGS-REQ and data of an authentication header (ticket-granting ticket and authenticator).
The checksum in the authenticator (which must be collision-proof) is to be computed over the
KDC-REQ-BODY encoding. In most requests for initial authentication (KRB_AS_REQ) and
most replies (KDC-REP), the padata field will be left out.

This field may also contain information needed by certain extensions to the Kerberos protocol.
For example, it might be used to initially verify the identity of a client before any response is
returned. This is accomplished with a padata field with padata-type equal to PA-ENC-
TIMESTAMP and padata-value defined as follows:

padata-type ::= PA-ENC-TIMESTAMP
padata-value ::= EncryptedData -- PA-ENC-TS-ENC

PA-ENC-TS-ENC ::= SEQUENCE {
patimestamp[0] KerberosTime, -- client’s time
pausec[1] INTEGER OPTIONAL

}

with patimestamp containing the client’s time and pausec containing the microseconds which
may be omitted if a client will not generate more than one request per second. The ciphertext
(padata-value) consists of the PA-ENC-TS-ENC sequence, encrypted using the client’s secret
key.

The padata field can also contain information needed to help the KDC or the client select the
key needed for generating or decrypting the response. This form of the padata is useful for
supporting the use of certain "smartcards" with Kerberos. The details of such extensions are
beyond the scope of this specification. See [10] for additional uses of this field.

padata-type
The padata-type element of the padata field indicates the way that the padata-value element
is to be interpreted. Negative values of padata-type are reserved for unregistered use; non-
negative values are used for a registered interpretation of the element type.

req-body This field is a placeholder delimiting the extent of the remaining fields. If a checksum is to be
calculated over the request, it is calculated over an encoding of the KDC-REQ-BODY
sequence which is enclosed within the req-body field.

kdc-options
This field appears in the KRB_AS_REQ and KRB_TGS_REQ requests to the KDC and indi-
cates the flags that the client wants set on the tickets as well as other information that is to
modify the behavior of the KDC. Where appropriate, the name of an option may be the same
as the flag that is set by that option. Although in most case, the bit in the options field will be
the same as that in the flags field, this is not guaranteed, so it is not acceptable to simply copy
the options field to the flags field. There are various checks that must be made before honoring
an option anyway.

The kdc_options field is a bit-field, where the selected options are indicated by the bit being set
(1), and the unselected options and reserved fields being reset (0). The encoding of the bits is
specified in section 5.2. The options are described in more detail above in section 2. The
meanings of the options are:

Section 5.4.1. - 30 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

Bit(s) Name Description

0 RESERVED Reserved for future expansion of this field.

1 FORWARDABLE The FORWARDABLE option indicates that the ticket to be issued is to
have its forwardable flag set. It may only be set on the initial request,
or in a subsequent request if the ticket-granting ticket on which it is
based is also forwardable.

2 FORWARDED The FORWARDED option is only specified in a request to the ticket-
granting server and will only be honored if the ticket-granting ticket in
the request has its FORWARDABLE bit set. This option indicates that
this is a request for forwarding. The address(es) of the host from which
the resulting ticket is to be valid are included in the addresses field of
the request.

3 PROXIABLE The PROXIABLE option indicates that the ticket to be issued is to have
its proxiable flag set. It may only be set on the initial request, or in a
subsequent request if the ticket-granting ticket on which it is based is
also proxiable.

4 PROXY The PROXY option indicates that this is a request for a proxy. This
option will only be honored if the ticket-granting ticket in the request
has its PROXIABLE bit set. The address(es) of the host from which
the resulting ticket is to be valid are included in the addresses field of
the request.

5 ALLOW-POSTDATE The ALLOW-POSTDATE option indicates that the ticket to be issued
is to have its MAY-POSTDATE flag set. It may only be set on the ini-
tial request, or in a subsequent request if the ticket-granting ticket on
which it is based also has its MAY-POSTDATE flag set.

6 POSTDATED The POSTDATED option indicates that this is a request for a postdated
ticket. This option will only be honored if the ticket-granting ticket on
which it is based has its MAY-POSTDATE flag set. The resulting
ticket will also have its INVALID flag set, and that flag may be reset by
a subsequent request to the KDC after the starttime in the ticket has
been reached.

7 UNUSED This option is presently unused.

8 RENEWABLE The RENEWABLE option indicates that the ticket to be issued is to
have its RENEWABLE flag set. It may only be set on the initial
request, or when the ticket-granting ticket on which the request is based
is also renewable. If this option is requested, then the rtime field in the
request contains the desired absolute expiration time for the ticket.

9-26 RESERVED Reserved for future use.

Section 5.4.1. - 31 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

27 RENEWABLE-OK The RENEWABLE-OK option indicates that a renewable ticket will be
acceptable if a ticket with the requested life cannot otherwise be pro-
vided. If a ticket with the requested life cannot be provided, then a
renewable ticket may be issued with a renew-till equal to the the
requested endtime. The value of the renew-till field may still be lim-
ited by local limits, or limits selected by the individual principal or
server.

28 ENC-TKT-IN-SKEY This option is used only by the ticket-granting service. The ENC-
TKT-IN-SKEY option indicates that the ticket for the end server is to
be encrypted in the session key from the additional ticket-granting
ticket provided.

29 RESERVED Reserved for future use.

30 RENEW This option is used only by the ticket-granting service. The RENEW
option indicates that the present request is for a renewal. The ticket
provided is encrypted in the secret key for the server on which it is
valid. This option will only be honored if the ticket to be renewed has
its RENEWABLE flag set and if the time in its renew-till field has not
passed. The ticket to be renewed is passed in the padata field as part
of the authentication header.

31 VALIDATE This option is used only by the ticket-granting service. The VALI-
DATE option indicates that the request is to validate a postdated ticket.
It will only be honored if the ticket presented is postdated, presently
has its INVALID flag set, and would be otherwise usable at this time.
A ticket cannot be validated before its starttime. The ticket presented
for validation is encrypted in the key of the server for which it is valid
and is passed in the padata field as part of the authentication header.

cname and sname
These fields are the same as those described for the ticket in section 5.3.1. sname may only be
absent when the ENC-TKT-IN-SKEY option is specified. If absent, the name of the server is
taken from the name of the client in the ticket passed as additional-tickets.

enc-authorization-data
The enc-authorization-data, if present (and it can only be present in the TGS_REQ form), is
an encoding of the desired authorization-data encrypted under the sub-session key if present
in the Authenticator, or alternatively from the session key in the ticket-granting ticket, both
from the padata field in the KRB_AP_REQ.

realm This field specifies the realm part of the server’s principal identifier. In the AS exchange, this
is also the realm part of the client’s principal identifier.

from This field is included in the KRB_AS_REQ and KRB_TGS_REQ ticket requests when the
requested ticket is to be postdated. It specifies the desired start time for the requested ticket.

till This field contains the expiration date requested by the client in a ticket request.

Section 5.4.1. - 32 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

rtime This field is the requested renew-till time sent from a client to the KDC in a ticket request. It
is optional.

nonce This field is part of the KDC request and response. It it intended to hold a random number
generated by the client. If the same number is included in the encrypted response from the
KDC, it provides evidence that the response is fresh and has not been replayed by an attacker.
Nonces must never be re-used. Ideally, it should be generated randomly, but if the correct
time is known, it may suffice23.

etype This field specifies the desired encryption algorithm to be used in the response.

addresses This field is included in the initial request for tickets, and optionally included in requests for
additional tickets from the ticket-granting server. It specifies the addresses from which the
requested ticket is to be valid. Normally it includes the addresses for the client’s host. If a
proxy is requested, this field will contain other addresses. The contents of this field are usually
copied by the KDC into the caddr field of the resulting ticket.

additional-tickets
Additional tickets may be optionally included in a request to the ticket-granting server. If the
ENC-TKT-IN-SKEY option has been specified, then the session key from the additional ticket
will be used in place of the server’s key to encrypt the new ticket. If more than one option
which requires additional tickets has been specified, then the additional tickets are used in the
order specified by the ordering of the options bits (see kdc-options, above).

The application code will be either ten (10) or twelve (12) depending on whether the request is for an
initial ticket (AS-REQ) or for an additional ticket (TGS-REQ).

The optional fields (addresses, authorization-data and additional-tickets) are only included if
necessary to perform the operation specified in the kdc-options field.

It should be noted that in KRB_TGS_REQ, the protocol version number appears twice and two dif-
ferent message types appear: the KRB_TGS_REQ message contains these fields as does the authentication
header (KRB_AP_REQ) that is passed in the padata field.

5.4.2. KRB_KDC_REP definition

The KRB_KDC_REP message format is used for the reply from the KDC for either an initial (AS)
request or a subsequent (TGS) request. There is no message type for KRB_KDC_REP. Instead, the type
will be either KRB_AS_REP or KRB_TGS_REP. The key used to encrypt the ciphertext part of the reply
depends on the message type. For KRB_AS_REP, the ciphertext is encrypted in the client’s secret key,
and the client’s key version number is included in the key version number for the encrypted data. For
KRB_TGS_REP, the ciphertext is encrypted in the sub-session key from the Authenticator, or if absent, the
session key from the ticket-granting ticket used in the request. In that case, no version number will be
present in the EncryptedData sequence.

The KRB_KDC_REP message contains the following fields:

AS-REP ::= [APPLICATION 11] KDC-REP
TGS-REP ::= [APPLICATION 13] KDC-REP

KDC-REP ::= SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,

hhhhhhhhhhhhhhhhhh
23 Note, however, that if the time is used as the nonce, one must make sure that the workstation time is monotonically in-
creasing. If the time is ever reset backwards, there is a small, but finite, probability that a nonce will be reused.

Section 5.4.2. - 33 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

padata[2] SEQUENCE OF PA-DATA OPTIONAL,
crealm[3] Realm,
cname[4] PrincipalName,
ticket[5] Ticket,
enc-part[6] EncryptedData

}

EncASRepPart ::= [APPLICATION 2525] EncKDCRepPart
EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key[0] EncryptionKey,
last-req[1] LastReq,
nonce[2] INTEGER,
key-expiration[3] KerberosTime OPTIONAL,
flags[4] TicketFlags,
authtime[5] KerberosTime,
starttime[6] KerberosTime OPTIONAL,
endtime[7] KerberosTime,
renew-till[8] KerberosTime OPTIONAL,
srealm[9] Realm,
sname[10] PrincipalName,
caddr[11] HostAddresses OPTIONAL

}

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is either KRB_AS_REP or
KRB_TGS_REP.

padata This field is described in detail in section 5.4.1. One possible use for this field is to encode an
alternate "mix-in" string to be used with a string-to-key algorithm (such as is described in sec-
tion 6.3.2). This ability is useful to ease transitions if a realm name needs to change (e.g. when
a company is acquired); in such a case all existing password-derived entries in the KDC data-
base would be flagged as needing a special mix-in string until the next password change.

crealm, cname, srealm and sname
These fields are the same as those described for the ticket in section 5.3.1.

ticket The newly-issued ticket, from section 5.3.1.

enc-part This field is a place holder for the ciphertext and related information that forms the encrypted
part of a message. The description of the encrypted part of the message follows each appear-
ance of this field. The encrypted part is encoded as described in section 6.1.

key This field is the same as described for the ticket in section 5.3.1.

last-req This field is returned by the KDC and specifies the time(s) of the last request by a principal.
Depending on what information is available, this might be the last time that a request for a
ticket-granting ticket was made, or the last time that a request based on a ticket-granting ticket

hhhhhhhhhhhhhhhhhh
25 An application code in the encrypted part of a message provides an additional check that the message was decrypted
properly.

Section 5.4.2. - 34 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

was successful. It also might cover all servers for a realm, or just the particular server. Some
implementations may display this information to the user to aid in discovering unauthorized
use of one’s identity. It is similar in spirit to the last login time displayed when logging into
timesharing systems.

nonce This field is described above in section 5.4.1.

key-expiration
The key-expiration field is part of the response from the KDC and specifies the time that the
client’s secret key is due to expire. The expiration might be the result of password aging or an
account expiration. This field will usually be left out of the TGS reply since the response to
the TGS request is encrypted in a session key and no client information need be retrieved from
the KDC database. It is up to the application client (usually the login program) to take
appropriate action (such as notifying the user) if the expiration time is imminent.

flags, authtime, starttime, endtime, renew-till and caddr
These fields are duplicates of those found in the encrypted portion of the attached ticket (see
section 5.3.1), provided so the client may verify they match the intended request and to assist
in proper ticket caching. If the message is of type KRB_TGS_REP, the caddr field will only
be filled in if the request was for a proxy or forwarded ticket, or if the user is substituting a
subset of the addresses from the ticket granting ticket. If the client-requested addresses are not
present or not used, then the addresses contained in the ticket will be the same as those
included in the ticket-granting ticket.

5.5. Client/Server (CS) message specifications
This section specifies the format of the messages used for the authentication of the client to the appli-

cation server.

5.5.1. KRB_AP_REQ definition

The KRB_AP_REQ message contains the Kerberos protocol version number, the message type
KRB_AP_REQ, an options field to indicate any options in use, and the ticket and authenticator themselves.
The KRB_AP_REQ message is often referred to as the "authentication header".

AP-REQ ::= [APPLICATION 14] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
ap-options[2] APOptions,
ticket[3] Ticket,
authenticator[4] EncryptedData

}

APOptions ::= BIT STRING {
reserved(0),
use-session-key(1),
mutual-required(2)

}

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is KRB_AP_REQ.

ap-options This field appears in the application request (KRB_AP_REQ) and affects the way the request
is processed. It is a bit-field, where the selected options are indicated by the bit being set (1),

Section 5.5.1. - 35 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

and the unselected options and reserved fields being reset (0). The encoding of the bits is
specified in section 5.2. The meanings of the options are:

Bit(s) Name Description

0 RESERVED Reserved for future expansion of this field.

1 USE-SESSION-KEY The USE-SESSION-KEY option indicates that the ticket the client is
presenting to a server is encrypted in the session key from the server’s
ticket-granting ticket. When this option is not specified, the ticket is
encrypted in the server’s secret key.

2 MUTUAL-REQUIRED The MUTUAL-REQUIRED option tells the server that the client
requires mutual authentication, and that it must respond with a
KRB_AP_REP message.

3-31 RESERVED Reserved for future use.

ticket This field is a ticket authenticating the client to the server.

authenticator
This contains the authenticator, which includes the client’s choice of a subkey. Its encoding is
described in section 5.3.2.

5.5.2. KRB_AP_REP definition

The KRB_AP_REP message contains the Kerberos protocol version number, the message type, and
an encrypted timestamp. The message is sent in in response to an application request (KRB_AP_REQ)
where the mutual authentication option has been selected in the ap-options field.

AP-REP ::= [APPLICATION 15] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
enc-part[2] EncryptedData

}

EncAPRepPart ::= [APPLICATION 2727] SEQUENCE {
ctime[0] KerberosTime,
cusec[1] INTEGER,
subkey[2] EncryptionKey OPTIONAL,
seq-number[3] INTEGER OPTIONAL

}

The encoded EncAPRepPart is encrypted in the shared session key of the ticket. The optional subkey field
can be used in an application-arranged negotiation to choose a per association session key.

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is KRB_AP_REP.

enc-part This field is described above in section 5.4.2.

hhhhhhhhhhhhhhhhhh
27 An application code in the encrypted part of a message provides an additional check that the message was decrypted
properly.

Section 5.5.2. - 36 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

ctime This field contains the current time on the client’s host.

cusec This field contains the microsecond part of the client’s timestamp.

subkey This field contains an encryption key which is to be used to protect this specific application
session. See section 3.2.6 for specifics on how this field is used to negotiate a key. Unless an
application specifies otherwise, if this field is left out, the sub-session key from the authentica-
tor, or if also left out, the session key from the ticket will be used.

5.5.3. Error message reply

If an error occurs while processing the application request, the KRB_ERROR message will be sent in
response. See section 5.9.1 for the format of the error message. The cname and crealm fields may be left
out if the server cannot determine their appropriate values from the corresponding KRB_AP_REQ mes-
sage. If the authenticator was decipherable, the ctime and cusec fields will contain the values from it.

5.6. KRB_SAFE message specification
This section specifies the format of a message that can be used by either side (client or server) of an

application to send a tamper-proof message to its peer. It presumes that a session key has previously been
exchanged (for example, by using the KRB_AP_REQ/KRB_AP_REP messages).

5.6.1. KRB_SAFE definition

The KRB_SAFE message contains user data along with a collision-proof checksum keyed with the
session key. The message fields are:

KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
safe-body[2] KRB-SAFE-BODY,
cksum[3] Checksum

}

KRB-SAFE-BODY ::= SEQUENCE {
user-data[0] OCTET STRING,
timestamp[1] KerberosTime OPTIONAL,
usec[2] INTEGER OPTIONAL,
seq-number[3] INTEGER OPTIONAL,
s-address[4] HostAddress,
r-address[5] HostAddress OPTIONAL

}

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is KRB_SAFE.

safe-body This field is a placeholder for the body of the KRB-SAFE message. It is to be encoded
separately and then have the checksum computed over it, for use in the cksum field.

cksum This field contains the checksum of the application data. Checksum details are described in
section 6.4. The checksum is computed over the encoding of the KRB-SAFE-BODY
sequence.

Section 5.6.1. - 37 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

user-data This field is part of the KRB_SAFE and KRB_PRIV messages and contain the application
specific data that is being passed from the sender to the recipient.

timestamp This field is part of the KRB_SAFE and KRB_PRIV messages. Its contents are the current
time as known by the sender of the message. By checking the timestamp, the recipient of the
message is able to make sure that it was recently generated, and is not a replay.

usec This field is part of the KRB_SAFE and KRB_PRIV headers. It contains the microsecond part
of the timestamp.

seq-number
This field is described above in section 5.3.2.

s-address This field specifies the address in use by the sender of the message.

r-address This field specifies the address in use by the recipient of the message. It may be omitted for
some uses (such as broadcast protocols), but the recipient may arbitrarily reject such messages.
This field along with s-address can be used to help detect messages which have been
incorrectly or maliciously delivered to the wrong recipient.

5.7. KRB_PRIV message specification
This section specifies the format of a message that can be used by either side (client or server) of an

application to securely and privately send a message to its peer. It presumes that a session key has previ-
ously been exchanged (for example, by using the KRB_AP_REQ/KRB_AP_REP messages).

5.7.1. KRB_PRIV definition

The KRB_PRIV message contains user data encrypted in the Session Key. The message fields are:

KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
enc-part[3] EncryptedData

}

EncKrbPrivPart ::= [APPLICATION 2829] SEQUENCE {
user-data[0] OCTET STRING,
timestamp[1] KerberosTime OPTIONAL,
usec[2] INTEGER OPTIONAL,
seq-number[3] INTEGER OPTIONAL,
s-address[4] HostAddress, -- sender’s addr
r-address[5] HostAddress OPTIONAL -- recip’s addr

}

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is KRB_PRIV.

enc-part This field holds an encoding of the EncKrbPrivPart sequence encrypted under the session
key30. This encrypted encoding is used for the enc-part field of the KRB-PRIV message. See

hhhhhhhhhhhhhhhhhh
29 An application code in the encrypted part of a message provides an additional check that the message was decrypted
properly.
30 If supported by the encryption method in use, an initialization vector may be passed to the encryption procedure, in ord-

Section 5.7.1. - 38 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

section 6 for the format of the ciphertext.

user-data, timestamp, usec, s-address and r-address
These fields are described above in section 5.6.1.

seq-number
This field is described above in section 5.3.2.

5.8. KRB_CRED message specification
This section specifies the format of a message that can be used to send Kerberos credentials from one

principal to another. It is presented here to encourage a common mechanism to be used by applications
when forwarding tickets or providing proxies to subordinate servers. It presumes that a session key has
already been exchanged perhaps by using the KRB_AP_REQ/KRB_AP_REP messages.

5.8.1. KRB_CRED definition

The KRB_CRED message contains a sequence of tickets to be sent and information needed to use
the tickets, including the session key from each. The information needed to use the tickets is encryped
under an encryption key previously exchanged. The message fields are:

KRB-CRED ::= [APPLICATION 22] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER, -- KRB_CRED
tickets[2] SEQUENCE OF Ticket,
enc-part[3] EncryptedData

}

EncKrbCredPart ::= [APPLICATION 29] SEQUENCE {
ticket-info[0] SEQUENCE OF KrbCredInfo,
nonce[1] INTEGER OPTIONAL,
timestamp[2] KerberosTime OPTIONAL,
usec[3] INTEGER OPTIONAL,
s-address[4] HostAddress OPTIONAL,
r-address[5] HostAddress OPTIONAL

}

KrbCredInfo ::= SEQUENCE {
key[0] EncryptionKey,
prealm[1] Realm OPTIONAL,
pname[2] PrincipalName OPTIONAL,
flags[3] TicketFlags OPTIONAL,
authtime[4] KerberosTime OPTIONAL,
starttime[5] KerberosTime OPTIONAL,
endtime[6] KerberosTime OPTIONAL
renew-till[7] KerberosTime OPTIONAL,
srealm[8] Realm OPTIONAL,
sname[9] PrincipalName OPTIONAL,
caddr[10] HostAddresses OPTIONAL

}

hhhhhhhhhhhhhhhhhh
er to achieve proper cipher chaining. The initialization vector might come from the last block of the ciphertext from the
previous KRB_PRIV message, but it is the application’s choice whether or not to use such an initialization vector. If left
out, the default initialization vector for the encryption algorithm will be used.

Section 5.8.1. - 39 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is KRB_CRED.

tickets
These are the tickets obtained from the KDC specifically for use by the intended recipient.
Successive tickets are paired with the corresponding KrbCredInfo sequence from the enc-part
of the KRB-CRED message.

enc-part This field holds an encoding of the EncKrbCredPart sequence encrypted under the session
key shared between the sender and the intended recipient. This encrypted encoding is used for
the enc-part field of the KRB-CRED message. See section 6 for the format of the ciphertext.

nonce If practical, an application may require the inclusion of a nonce generated by the recipient of
the message. If the same value is included as the nonce in the message, it provides evidence
that the message is fresh and has not been replayed by an attacker. A nonce must never be re-
used; it should be generated randomly by the recipient of the message and provided to the
sender of the message in an application specific manner.

timestamp and usec

These fields specify the time that the KRB-CRED message was generated. The time is used to
provide assurance that the message is fresh.

s-address and r-address
These fields are described above in section 5.6.1. They are used optionally to provide addi-
tional assurance of the integrity of the KRB-CRED message.

key This field exists in the corresponding ticket passed by the KRB-CRED message and is used to
pass the session key from the sender to the intended recipient. The field’s encoding is
described in section 6.2.

The following fields are optional. If present, they can be associated with the credentials in the
remote ticket file. If left out, then it is assumed that the recipient of the credentials already knows their
value.

prealm and pname
The name and realm of the delegated principal identity.

flags, authtime, starttime, endtime, renew-till, srealm, sname, and caddr
These fields contain the values of the corresponding fields from the ticket found in the ticket
field. Descriptions of the fields are identical to the descriptions in the KDC-REP message.

5.9. Error message specification
This section specifies the format for the KRB_ERROR message. The fields included in the message

are intended to return as much information as possible about an error. It is not expected that all the infor-
mation required by the fields will be available for all types of errors. If the appropriate information is not
available when the message is composed, the corresponding field will be left out of the message.

Note that since the KRB_ERROR message is not protected by any encryption, it is quite possible for
an intruder to synthesize or modify such a message. In particular, this means that the client should not use
any fields in this message for security-critical purposes, such as setting a system clock or generating a fresh
authenticator. The message can be useful, however, for advising a user on the reason for some failure.

Section 5.9. - 40 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

5.9.1. KRB_ERROR definition

The KRB_ERROR message consists of the following fields:

KRB-ERROR ::= [APPLICATION 30] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
ctime[2] KerberosTime OPTIONAL,
cusec[3] INTEGER OPTIONAL,
stime[4] KerberosTime,
susec[5] INTEGER,
error-code[6] INTEGER,
crealm[7] Realm OPTIONAL,
cname[8] PrincipalName OPTIONAL,
realm[9] Realm, -- Correct realm
sname[10] PrincipalName, -- Correct name
e-text[11] GeneralString OPTIONAL,
e-data[12] OCTET STRING OPTIONAL

}

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is KRB_ERROR.

ctime This field is described above in section 5.4.1.

cusec This field is described above in section 5.5.2.

stime This field contains the current time on the server. It is of type KerberosTime.

susec This field contains the microsecond part of the server’s timestamp. Its value ranges from 0 to
999. It appears along with stime. The two fields are used in conjunction to specify a reason-
ably accurate timestamp.

error-code This field contains the error code returned by Kerberos or the server when a request fails. To
interpret the value of this field see the list of error codes in section 8. Implementations are
encouraged to provide for national language support in the display of error messages.

crealm, cname, srealm and sname
These fields are described above in section 5.3.1.

e-text This field contains additional text to help explain the error code associated with the failed
request (for example, it might include a principal name which was unknown).

e-data This field contains additional data about the error for use by the application to help it recover
from or handle the error. If the error-code is KDC_ERR_PREAUTH_REQUIRED, then the
e-data field will contain an encoding of a sequence of padata fields, each corresponding to an
acceptable pre-authentication method and optionally containing data for the method:

METHOD-DATA ::= SEQUENCE of PA-DATA

If the error-code is KRB_AP_ERR_METHOD, then the e-data field will contain an encoding
of the following sequence:

Section 5.9.1. - 41 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

METHOD-DATA ::= SEQUENCE {
method-type[0] INTEGER,
method-data[1] OCTET STRING OPTIONAL

}

method-type will indicate the required alternate method; method-data will contain any
required additional information.

6. Encryption and Checksum Specifications
The Kerberos protocols described in this document are designed to use stream encryption ciphers, which
can be simulated using commonly available block encryption ciphers, such as the Data Encryption Stan-
dard, [11] in conjunction with block chaining and checksum methods [12]. Encryption is used to prove the
identities of the network entities participating in message exchanges. The Key Distribution Center for each
realm is trusted by all principals registered in that realm to store a secret key in confidence. Proof of
knowledge of this secret key is used to verify the authenticity of a principal.

The KDC uses the principal’s secret key (in the AS exchange) or a shared session key (in the TGS
exchange) to encrypt responses to ticket requests; the ability to obtain the secret key or session key implies
the knowledge of the appropriate keys and the identity of the KDC. The ability of a principal to decrypt
the KDC response and present a Ticket and a properly formed Authenticator (generated with the session
key from the KDC response) to a service verifies the identity of the principal; likewise the ability of the
service to extract the session key from the Ticket and prove its knowledge thereof in a response verifies the
identity of the service.

The Kerberos protocols generally assume that the encryption used is secure from cryptanalysis; how-
ever, in some cases, the order of fields in the encrypted portions of messages are arranged to minimize the
effects of poorly chosen keys. It is still important to choose good keys. If keys are derived from user-
typed passwords, those passwords need to be well chosen to make brute force attacks more difficult.
Poorly chosen keys still make easy targets for intruders.

The following sections specify the encryption and checksum mechanisms currently defined for Ker-
beros. The encodings, chaining, and padding requirements for each are described. For encryption
methods, it is often desirable to place random information (often referred to as a confounder) at the start of
the message. The requirements for a confounder are specified with each encryption mechanism.

Some encryption systems use a block-chaining method to improve the the security characteristics of
the ciphertext. However, these chaining methods often don’t provide an integrity check upon decryption.
Such systems (such as DES in CBC mode) must be augmented with a checksum of the plaintext which can
be verified at decryption and used to detect any tampering or damage. Such checksums should be good at
detecting burst errors in the input. If any damage is detected, the decryption routine is expected to return
an error indicating the failure of an integrity check. Each encryption type is expected to provide and verify
an appropriate checksum. The specification of each encryption method sets out its checksum requirements.

Finally, where a key is to be derived from a user’s password, an algorithm for converting the pass-
word to a key of the appropriate type is included. It is desirable for the string to key function to be one-
way, and for the mapping to be different in different realms. This is important because users who are
registered in more than one realm will often use the same password in each, and it is desirable that an
attacker compromising the Kerberos server in one realm not obtain or derive the user’s key in another.

For an discussion of the integrity characteristics of the candidate encryption and checksum methods
considered for Kerberos, the the reader is referred to [13].

6.1. Encryption Specifications
The following ASN.1 definition describes all encrypted messages. The enc-part field which appears

in the unencrypted part of messages in section 5 is a sequence consisting of an encryption type, an optional
key version number, and the ciphertext.

Section 6.1. - 42 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

EncryptedData ::= SEQUENCE {
etype[0] INTEGER, -- EncryptionType
kvno[1] INTEGER OPTIONAL,
cipher[2] OCTET STRING -- ciphertext

}

etype This field identifies which encryption algorithm was used to encipher the cipher. Detailed
specifications for selected encryption types appear later in this section.

kvno This field contains the version number of the key under which data is encrypted. It is only
present in messages encrypted under long lasting keys, such as principals’ secret keys.

cipher This field contains the enciphered text, encoded as an OCTET STRING.

The cipher field is generated by applying the specified encryption algorithm to data composed of the
message and algorithm-specific inputs. Encryption mechanisms defined for use with Kerberos must take
sufficient measures to guarantee the integrity of the plaintext, and we recommend they also take measures
to protect against precomputed dictionary attacks. If the encryption algorithm is not itself capable of doing
so, the protections can often be enhanced by adding a checksum and a confounder.

The suggested format for the data to be encrypted includes a confounder, a checksum, the encoded
plaintext, and any necessary padding. The msg-seq field contains the part of the protocol message
described in section 5 which is to be encrypted. The confounder, checksum, and padding are all untagged
and untyped, and their length is exactly sufficient to hold the appropriate item. The type and length is
implicit and specified by the particular encryption type being used (etype). The format for the data to be
encrypted is described in the following diagram:

+-----------+----------+-------------+-----+
|confounder | check | msg-seq | pad |
+-----------+----------+-------------+-----+

The format cannot be described in ASN.1, but for those who prefer an ASN.1-like notation:

CipherText ::= ENCRYPTED SEQUENCE {
confounder[0] UNTAGGED32 OCTET STRING(conf_length) OPTIONAL,
check[1] UNTAGGED OCTET STRING(checksum_length) OPTIONAL,
msg-seq[2] MsgSequence,
pad UNTAGGED OCTET STRING(pad_length) OPTIONAL

}

One generates a random confounder of the appropriate length, placing it in confounder; zeroes out
check; calculates the appropriate checksum over confounder, check, and msg-seq, placing the result in
check; adds the necessary padding; then encrypts using the specified encryption type and the appropriate
key.

Unless otherwise specified, a definition of an encryption algorithm that specifies a checksum, a
length for the confounder field, or an octet boundary for padding uses this ciphertext format33. Those fields
hhhhhhhhhhhhhhhhhh
32 In the above specification, UNTAGGED OCTET STRING(length) is the notation for an octet string with its tag and
length removed. It is not a valid ASN.1 type. The tag bits and length must be removed from the confounder since the pur-
pose of the confounder is so that the message starts with random data, but the tag and its length are fixed. For other fields,
the length and tag would be redundant if they were included because they are specified by the encryption type.
33 The ordering of the fields in the CipherText is important. Additionally, messages encoded in this format must include a
length as part of the msg-seq field. This allows the recipient to verify that the message has not been truncated. Without a
length, an attacker could use a chosen plaintext attack to generate a message which could be truncated, while leaving the
checksum intact. Note that if the msg-seq is an encoding of an ASN.1 SEQUENCE or OCTET STRING, then the length is
part of that encoding.

Section 6.1. - 43 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

which are not specified will be omitted.

In the interest of allowing all implementations using a particular encryption type to communicate
with all others using that type, the specification of an encryption type defines any checksum that is needed
as part of the encryption process. If an alternative checksum is to be used, a new encryption type must be
defined.

Some cryptosystems require additional information beyond the key and the data to be encrypted. For
example, DES, when used in cipher-block-chaining mode, requires an initialization vector. If required, the
description for each encryption type must specify the source of such additional information.

6.2. Encryption Keys
The sequence below shows the encoding of an encryption key:

EncryptionKey ::= SEQUENCE {
keytype[0] INTEGER,
keyvalue[1] OCTET STRING

}

keytype This field specifies the type of encryption key that follows in the keyvalue field. It will almost
always correspond to the encryption algorithm used to generate the EncryptedData, though
more than one algorithm may use the same type of key (the mapping is many to one). This
might happen, for example, if the encryption algorithm uses an alternate checksum algorithm
for an integrity check, or a different chaining mechanism.

keyvalue This field contains the key itself, encoded as an octet string.

All negative values for the encryption key type are reserved for local use. All non-negative values
are reserved for officially assigned type fields and interpretations.

6.3. Encryption Systems

6.3.1. The NULL Encryption System (null)

If no encryption is in use, the encryption system is said to be the NULL encryption system. In the
NULL encryption system there is no checksum, confounder or padding. The ciphertext is simply the plain-
text. The NULL Key is used by the null encryption system and is zero octets in length, with keytype zero
(0).

6.3.2. DES in CBC mode with a CRC-32 checksum (des-cbc-crc)

The des-cbc-crc encryption mode encrypts information under the Data Encryption Standard [11]
using the cipher block chaining mode [12]. A CRC-32 checksum (described in ISO 3309 [14]) is applied
to the confounder and message sequence (msg-seq) and placed in the cksum field. DES blocks are 8
bytes. As a result, the data to be encrypted (the concatenation of confounder, checksum, and message)
must be padded to an 8 byte boundary before encryption. The details of the encryption of this data are
identical to those for the des-cbc-md5 encryption mode.

Note that, since the CRC-32 checksum is not collision-proof, an attacker could use a probabilistic
chosen-plaintext attack to generate a valid message even if a confounder is used [13]. The use of
collision-proof checksums is recommended for environments where such attacks represent a significant
threat. The use of the CRC-32 as the checksum for ticket or authenticator is no longer mandated as an
interoperability requirement for Kerberos Version 5 Specification 1 (See section 9.1 for specific details).

6.3.3. DES in CBC mode with an MD4 checksum (des-cbc-md4)

The des-cbc-md4 encryption mode encrypts information under the Data Encryption Standard [11]
using the cipher block chaining mode [12]. An MD4 checksum (described in [15]) is applied to the con-
founder and message sequence (msg-seq) and placed in the cksum field. DES blocks are 8 bytes. As a

Section 6.3.3. - 44 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

result, the data to be encrypted (the concatenation of confounder, checksum, and message) must be padded
to an 8 byte boundary before encryption. The details of the encryption of this data are identical to those for
the des-cbc-md5 encryption mode.

6.3.4. DES in CBC mode with an MD5 checksum (des-cbc-md5)

The des-cbc-md5 encryption mode encrypts information under the Data Encryption Standard [11]
using the cipher block chaining mode [12]. An MD5 checksum (described in [16].) is applied to the con-
founder and message sequence (msg-seq) and placed in the cksum field. DES blocks are 8 bytes. As a
result, the data to be encrypted (the concatenation of confounder, checksum, and message) must be padded
to an 8 byte boundary before encryption.

Plaintext and DES ciphtertext are encoded as 8-octet blocks which are concatenated to make the 64-
bit inputs for the DES algorithms. The first octet supplies the 8 most significant bits (with the octet’s MSbit
used as the DES input block’s MSbit, etc.), the second octet the next 8 bits, ..., and the eighth octet supplies
the 8 least significant bits.

Encryption under DES using cipher block chaining requires an additional input in the form of an ini-
tialization vector. Unless otherwise specified, zero should be used as the initialization vector. Kerberos’
use of DES requires an 8-octet confounder.

The DES specifications identify some "weak" and "semi-weak" keys; those keys shall not be used for
encrypting messages for use in Kerberos. Additionally, because of the way that keys are derived for the
encryption of checksums, keys shall not be used that yield "weak" or "semi-weak" keys when eXclusive-
ORed with the constant F0F0F0F0F0F0F0F0.

A DES key is 8 octets of data, with keytype one (1). This consists of 56 bits of key, and 8 parity bits
(one per octet). The key is encoded as a series of 8 octets written in MSB-first order. The bits within the
key are also encoded in MSB order. For example, if the encryption key is
(B1,B2,...,B7,P1,B8,...,B14,P2,B15,...,B49,P7,B50,...,B56,P8) where B1,B2,...,B56 are the key bits in MSB
order, and P1,P2,...,P8 are the parity bits, the first octet of the key would be B1,B2,...,B7,P1 (with B1 as the
MSbit). [See the FIPS 81 introduction for reference.]

To generate a DES key from a text string (password), the text string normally must have the realm
and each component of the principal’s name appended34, then padded with ASCII nulls to an 8 byte boun-
dary. This string is then fan-folded and eXclusive-ORed with itself to form an 8 byte DES key. The parity
is corrected on the key, and it is used to generate a DES CBC checksum on the initial string (with the realm
and name appended). Next, parity is corrected on the CBC checksum. If the result matches a "weak" or
"semi-weak" key as described in the DES specification, it is eXclusive-ORed with the constant
00000000000000F0. Finally, the result is returned as the key. Pseudocode follows:

string_to_key(string,realm,name) {
odd = 1;
s = string + realm;
for(each component in name) {

s = s + component;
}
tempkey = NULL;
pad(s); /* with nulls to 8 byte boundary */
for(8byteblock in s) {

if(odd == 0) {
odd = 1;
reverse(8byteblock)

}
else odd = 0;

hhhhhhhhhhhhhhhhhh
34 In some cases, it may be necessary to use a different "mix-in" string for compatibility reasons; see the discussion of pa-
data in section 5.4.2.

Section 6.3.4. - 45 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

tempkey = tempkey XOR 8byteblock;
}
fixparity(tempkey);
key = DES-CBC-check(s,tempkey);
fixparity(key);
if(is_weak_key_key(key))

key = key XOR 0xF0;
return(key);

}

6.4. Checksums
The following is the ASN.1 definition used for a checksum:

Checksum ::= SEQUENCE {
cksumtype[0] INTEGER,
checksum[1] OCTET STRING

}

cksumtype This field indicates the algorithm used to generate the accompanying checksum.

checksum This field contains the checksum itself, encoded as an octet string.

Detailed specification of selected checksum types appear later in this section. Negative values for
the checksum type are reserved for local use. All non-negative values are reserved for officially assigned
type fields and interpretations.

Checksums used by Kerberos can be classified by two properties: whether they are collision-proof,
and whether they are keyed. It is infeasible to find two plaintexts which generate the same checksum value
for a collision-proof checksum. A key is required to perturb or initialize the algorithm in a keyed check-
sum. To prevent message-stream modification by an active attacker, unkeyed checksums should only be
used when the checksum and message will be subsequently encrypted (e.g. the checksums defined as part
of the encryption algorithms covered earlier in this section). Collision-proof checksums can be made
tamper-proof as well if the checksum value is encrypted before inclusion in a message. In such cases, the
composition of the checksum and the encryption algorithm must be considered a separate checksum algo-
rithm (e.g. RSA-MD5 encrypted using DES is a new checksum algorithm of type RSA-MD5-DES). For
most keyed checksums, as well as for the encrypted forms of collision-proof checksums, Kerberos
prepends a confounder before the checksum is calculated.

6.4.1. The CRC-32 Checksum (crc32)

The CRC-32 checksum calculates a checksum based on a cyclic redundancy check as described in
ISO 3309 [14]. The resulting checksum is four (4) octets in length. The CRC-32 is neither keyed nor
collision-proof. The use of this checksum is not recommended. An attacker using a probabilistic chosen-
plaintext attack as described in [13] might be able to generate an alternative message that satisfies the
checksum. The use of collision-proof checksums is recommended for environments where such attacks
represent a significant threat.

6.4.2. The RSA MD4 Checksum (rsa-md4)

The RSA-MD4 checksum calculates a checksum using the RSA MD4 algorithm [15]. The algo-
rithm takes as input an input message of arbitrary length and produces as output a 128-bit (16 octet) check-
sum. RSA-MD4 is believed to be collision-proof.

6.4.3. RSA MD4 Cryptographic Checksum Using DES (rsa-md4-des)

The RSA-MD4-DES checksum calculates a keyed collision-proof checksum by prepending an 8
octet confounder before the text, applying the RSA MD4 checksum algorithm, and encrypting the con-
founder and the checksum using DES in cipher-block-chaining (CBC) mode using a variant of the key,
where the variant is computed by eXclusive-ORing the key with the constant F0F0F0F0F0F0F0F035. The
hhhhhhhhhhhhhhhhhh
35 A variant of the key is used to limit the use of a key to a particular function, separating the functions of generating a
checksum from other encryption performed using the session key. The constant F0F0F0F0F0F0F0F0 was chosen because

Section 6.4.3. - 46 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

initialization vector should be zero. The resulting checksum is 24 octets long (8 octets of which are redun-
dant). This checksum is tamper-proof and believed to be collision-proof.

The DES specifications identify some "weak keys"; those keys shall not be used for generating
RSA-MD4 checksums for use in Kerberos.

The format for the checksum is described in the following diagram:

+--+
| des-cbc(confounder + rsa-md4(confounder+msg),key=var(key),iv=0) |
+--+

The format cannot be described in ASN.1, but for those who prefer an ASN.1-like notation:

rsa-md4-des-checksum ::= ENCRYPTED UNTAGGED SEQUENCE {
confounder[0] UNTAGGED OCTET STRING(8),
check[1] UNTAGGED OCTET STRING(16)

}

6.4.4. The RSA MD5 Checksum (rsa-md5)

The RSA-MD5 checksum calculates a checksum using the RSA MD5 algorithm. [16]. The algo-
rithm takes as input an input message of arbitrary length and produces as output a 128-bit (16 octet) check-
sum. RSA-MD5 is believed to be collision-proof.

6.4.5. RSA MD5 Cryptographic Checksum Using DES (rsa-md5-des)

The RSA-MD5-DES checksum calculates a keyed collision-proof checksum by prepending an 8
octet confounder before the text, applying the RSA MD5 checksum algorithm, and encrypting the con-
founder and the checksum using DES in cipher-block-chaining (CBC) mode using a variant of the key,
where the variant is computed by eXclusive-ORing the key with the constant F0F0F0F0F0F0F0F0. The
initialization vector should be zero. The resulting checksum is 24 octets long (8 octets of which are redun-
dant). This checksum is tamper-proof and believed to be collision-proof.

The DES specifications identify some "weak keys"; those keys shall not be used for encrypting
RSA-MD5 checksums for use in Kerberos.

The format for the checksum is described in the following diagram:

+--+
| des-cbc(confounder + rsa-md5(confounder+msg),key=var(key),iv=0) |
+--+

The format cannot be described in ASN.1, but for those who prefer an ASN.1-like notation:

rsa-md5-des-checksum ::= ENCRYPTED UNTAGGED SEQUENCE {
confounder[0] UNTAGGED OCTET STRING(8),
check[1] UNTAGGED OCTET STRING(16)

}

6.4.6. DES cipher-block chained checksum (des-mac)

The DES-MAC checksum is computed by prepending an 8 octet confounder to the plaintext, per-
forming a DES CBC-mode encryption on the result using the key and an initialization vector of zero, tak-
ing the last block of the ciphertext, prepending the same confounder and encrypting the pair using DES in
hhhhhhhhhhhhhhhhhh
it maintains key parity. The properties of DES precluded the use of the complement. The same constant is used for similar
purpose in the Message Integrity Check in the Privacy Enhanced Mail standard.

Section 6.4.6. - 47 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

cipher-block-chaining (CBC) mode using a a variant of the key, where the variant is computed by
eXclusive-ORing the key with the constant F0F0F0F0F0F0F0F0. The initialization vector should be zero.
The resulting checksum is 128 bits (16 octets) long, 64 bits of which are redundant. This checksum is
tamper-proof and collision-proof.

The format for the checksum is described in the following diagram:

+--+--+--+--+--+--+--+--+-----+-----+-----+-----+-----+-----+-----+-----+
| des-cbc(confounder + des-mac(conf+msg,iv=0,key),key=var(key),iv=0) |
+--+--+--+--+--+--+--+--+-----+-----+-----+-----+-----+-----+-----+-----+

The format cannot be described in ASN.1, but for those who prefer an ASN.1-like notation:

des-mac-checksum ::= ENCRYPTED UNTAGGED SEQUENCE {
confounder[0] UNTAGGED OCTET STRING(8),
check[1] UNTAGGED OCTET STRING(8)

}

The DES specifications identify some "weak" and "semi-weak" keys; those keys shall not be used for
generating DES-MAC checksums for use in Kerberos, nor shall a key be used whose veriant is "weak" or
"semi-weak".

6.4.7. RSA MD4 Cryptographic Checksum Using DES alternative (rsa-md4-des-k)

The RSA-MD4-DES-K checksum calculates a keyed collision-proof checksum by applying the RSA
MD4 checksum algorithm and encrypting the results using DES in cipher-block-chaining (CBC) mode
using a DES key as both key and initialization vector. The resulting checksum is 16 octets long. This
checksum is tamper-proof and believed to be collision-proof. Note that this checksum type is the old
method for encoding the RSA-MD4-DES checksum and it is no longer recommended.

6.4.8. DES cipher-block chained checksum alternative (des-mac-k)

The DES-MAC-K checksum is computed by performing a DES CBC-mode encryption of the plain-
text, and using the last block of the ciphertext as the checksum value. It is keyed with an encryption key
and an initialization vector; any uses which do not specify an additional initialization vector will use the
key as both key and initialization vector. The resulting checksum is 64 bits (8 octets) long. This checksum
is tamper-proof and collision-proof. Note that this checksum type is the old method for encoding the
DES-MAC checksum and it is no longer recommended.

The DES specifications identify some "weak keys"; those keys shall not be used for generating
DES-MAC checksums for use in Kerberos.

7. Naming Constraints

7.1. Realm Names
Although realm names are encoded as GeneralStrings and although a realm can technically select

any name it chooses, interoperability across realm boundaries requires agreement on how realm names are
to be assigned, and what information they imply.

To enforce these conventions, each realm must conform to the conventions itself, and it must require
that any realms with which inter-realm keys are shared also conform to the conventions and require the
same from its neighbors.

There are presently four styles of realm names: domain, X500, other, and reserved. Examples of
each style follow:

domain: host.subdomain.domain (example)
X500: C=US/O=OSF (example)
other: NAMETYPE:rest/of.name=without-restrictions (example)

Section 7.1. - 48 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

reserved: reserved, but will not conflict with above

Domain names must look like domain names: they consist of components separated by periods (.) and they
contain neither colons (:) nor slashes (/).

X.500 names contain an equal (=) and cannot contain a colon (:) before the equal. The realm names
for X.500 names will be string representations of the names with components separated by slashes. Lead-
ing and trailing slashes will not be included.

Names that fall into the other category must begin with a prefix that contains no equal (=) or period
(.) and the prefix must be followed by a colon (:) and the rest of the name. All prefixes must be assigned
before they may be used. Presently none are assigned.

The reserved category includes strings which do not fall into the first three categories. All names in
this category are reserved. It is unlikely that names will be assigned to this category unless there is a very
strong argument for not using the "other" category.

These rules guarantee that there will be no conflicts between the various name styles. The following
additional constraints apply to the assignment of realm names in the domain and X.500 categories: the
name of a realm for the domain or X.500 formats must either be used by the organization owning (to whom
it was assigned) an Internet domain name or X.500 name, or in the case that no such names are registered,
authority to use a realm name may be derived from the authority of the parent realm. For example, if there
is no domain name for E40.MIT.EDU, then the administrator of the MIT.EDU realm can authorize the
creation of a realm with that name.

This is acceptable because the organization to which the parent is assigned is presumably the organi-
zation authorized to assign names to its children in the X.500 and domain name systems as well. If the
parent assigns a realm name without also registering it in the domain name or X.500 hierarchy, it is the
parent’s responsibility to make sure that there will not in the future exists a name identical to the realm
name of the child unless it is assigned to the same entity as the realm name.

7.2. Principal Names
As was the case for realm names, conventions are needed to ensure that all agree on what informa-

tion is implied by a principal name. The name-type field that is part of the principal name indicates the
kind of information implied by the name. The name-type should be treated as a hint. Ignoring the name
type, no two names can be the same (i.e. at least one of the components, or the realm, must be different).
This constraint may be eliminated in the future. The following name types are defined:

name-type value meaning
NT-UNKNOWN 0 Name type not known
NT-PRINCIPAL 1 Just the name of the principal as in DCE, or for users
NT-SRV-INST 2 Service and other unique instance (krbtgt)
NT-SRV-HST 3 Service with host name as instance (telnet, rcommands)
NT-SRV-XHST 4 Service with host as remaining components
NT-UID 5 Unique ID

When a name implies no information other than its uniqueness at a particular time the name type PRINCI-
PAL should be used. The principal name type should be used for users, and it might also be used for a
unique server. If the name is a unique machine generated ID that is guaranteed never to be reassigned then
the name type of UID should be used (note that it is generally a bad idea to reassign names of any type
since stale entries might remain in access control lists).

If the first component of a name identifies a service and the remaining components identify an
instance of the service in a server specified manner, then the name type of SRV-INST should be used. An
example of this name type is the Kerberos ticket-granting ticket which has a first component of krbtgt and a
second component identifying the realm for which the ticket is valid.

If instance is a single component following the service name and the instance identifies the host on

Section 7.2. - 49 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

which the server is running, then the name type SRV-HST should be used. This type is typically used for
Internet services such as telnet and the Berkeley R commands. If the separate components of the host
name appear as successive components following the name of the service, then the name type SRV-XHST
should be used. This type might be used to identify servers on hosts with X.500 names where the slash (/)
might otherwise be ambiguous.

A name type of UNKNOWN should be used when the form of the name is not known. When com-
paring names, a name of type UNKNOWN will match principals authenticated with names of any type. A
principal authenticated with a name of type UNKNOWN, however, will only match other names of type
UNKNOWN.

Names of any type with an initial component of "krbtgt" are reserved for the Kerberos ticket granting
service. See section 8.2.3 for the form of such names.

7.2.1. Name of server principals

The principal identifier for a server on a host will generally be composed of two parts: (1) the realm
of the KDC with which the server is registered, and (2) a two-component name of type NT-SRV-HST if
the host name is an Internet domain name or a multi-component name of type NT-SRV-XHST if the name
of the host is of a form such as X.500 that allows slash (/) separators. The first component of the two- or
multi-component name will identify the service and the latter components will identify the host. Where the
name of the host is not case sensitive (for example, with Internet domain names) the name of the host must
be lower case. For services such as telnet and the Berkeley R commands which run with system privileges,
the first component will be the string "host" instead of a service specific identifier.

8. Constants and other defined values

8.1. Host address types
All negative values for the host address type are reserved for local use. All non-negative values are

reserved for officially assigned type fields and interpretations.

The values of the types for the following addresses are chosen to match the defined address family
constants in the Berkeley Standard Distributions of Unix. They can be found in <sys/socket.h> with sym-
bolic names AF_xxx (where xxx is an abbreviation of the address family name).

Internet addresses

Internet addresses are 32-bit (4-octet) quantities, encoded in MSB order. The type of internet
addresses is two (2).

CHAOSnet addresses

CHAOSnet addresses are 16-bit (2-octet) quantities, encoded in MSB order. The type of CHAOSnet
addresses is five (5).

ISO addresses

ISO addresses are variable-length. The type of ISO addresses is seven (7).

Xerox Network Services (XNS) addresses

XNS addresses are 48-bit (6-octet) quantities, encoded in MSB order. The type of XNS addresses is
six (6).

AppleTalk Datagram Delivery Protocol (DDP) addresses

AppleTalk DDP addresses consist of an 8-bit node number and a 16-bit network number. The first
octet of the address is the node number; the remaining two octets encode the network number in MSB
order. The type of AppleTalk DDP addresses is sixteen (16).

Section 8.1. - 50 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

DECnet Phase IV addresses

DECnet Phase IV addresses are 16-bit addresses, encoded in LSB order. The type of DECnet Phase
IV addresses is twelve (12).

8.2. KDC messages

8.2.1. IP transport

When contacting a Kerberos server (KDC) for a KRB_KDC_REQ request using IP transport, the
client shall send a UDP datagram containing only an encoding of the request to port 88 (decimal) at the
KDC’s IP address; the KDC will respond with a reply datagram containing only an encoding of the reply
message (either a KRB_ERROR or a KRB_KDC_REP) to the sending port at the sender’s IP address.

8.2.2. OSI transport

During authentication of an OSI client to and OSI server, the mutual authentication of an OSI server
to an OSI client, the transfer of credentials from an OSI client to an OSI server, or during exchange of
private or integrity checked messages, Kerberos protocol messages may be treated as opaque objects and
the type of the authentication mechanism will be:

OBJECT IDENTIFIER ::= {iso (1), org(3), dod(5),internet(1), security(5), kerberosv5(2)}

Depending on the situation, the opaque object will be an authentication header (KRB_AP_REQ), an
authentication reply (KRB_AP_REP), a safe message (KRB_SAFE), a private message (KRB_PRIV), or a
credentials message (KRB_CRED). The opaque data contains an application code as specified in the
ASN.1 description for each message. The application code may be used by Kerberos to determine the mes-
sage type.

8.2.3. Name of the TGS

The principal identifier of the ticket-granting service shall be composed of three parts: (1) the realm
of the KDC issuing the TGS ticket (2) a two-part name of type NT-SRV-INST, with the first part "krbtgt"
and the second part the name of the realm which will accept the ticket-granting ticket. For example, a
ticket-granting ticket issued by the ATHENA.MIT.EDU realm to be used to get tickets from the
ATHENA.MIT.EDU KDC has a principal identifier of "ATHENA.MIT.EDU" (realm), ("krbtgt",
"ATHENA.MIT.EDU") (name). A ticket-granting ticket issued by the ATHENA.MIT.EDU realm to be
used to get tickets from the MIT.EDU realm has a principal identifier of "ATHENA.MIT.EDU" (realm),
("krbtgt", "MIT.EDU") (name).

8.3. Protocol constants and associated values
The following tables list constants used in the protocol and defines their meanings.

Encryption type etype value block size minimum pad size confounder size
NULL 0 1 0 0
des-cbc-crc 1 8 4 8
des-cbc-md4 2 8 0 8
des-cbc-md5 3 8 0 8

Checksum type sumtype value checksum size
CRC32 1 4
rsa-md4 2 16
rsa-md4-des 3 24
des-mac 4 16
des-mac-k 5 8
rsa-md4-des-k 6 16
rsa-md5 7 16
rsa-md5-des 8 24

Section 8.3. - 51 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

padata type padata-type value
PA-TGS-REQ 1
PA-ENC-TIMESTAMP 2
PA-PW-SALT 3

authorization data type ad-type value
reserved values 0-63
OSF-DCE 64
SESAME 65

alternate authentication type method-type value
reserved values 0-63
ATT-CHALLENGE-RESPONSE 64

transited encoding type tr-type value
DOMAIN-X500-COMPRESS 1
reserved values all others

Label Value Meaning or MIT code

pvno 5 current Kerberos protocol version number

message types

KRB_AS_REQ 10 Request for initial authentication
KRB_AS_REP 11 Response to KRB_AS_REQ request
KRB_TGS_REQ 12 Request for authentication based on TGT
KRB_TGS_REP 13 Response to KRB_TGS_REQ request
KRB_AP_REQ 14 application request to server
KRB_AP_REP 15 Response to KRB_AP_REQ_MUTUAL
KRB_SAFE 20 Safe (checksummed) application message
KRB_PRIV 21 Private (encrypted) application message
KRB_CRED 22 Private (encrypted) message to forward credentials
KRB_ERROR 30 Error response

name types

KRB_NT_UNKNOWN 0 Name type not known
KRB_NT_PRINCIPAL 1 Just the name of the principal as in DCE, or for users
KRB_NT_SRV_INST 2 Service and other unique instance (krbtgt)
KRB_NT_SRV_HST 3 Service with host name as instance (telnet, rcommands)
KRB_NT_SRV_XHST 4 Service with host as remaining components
KRB_NT_UID 5 Unique ID

error codes

KDC_ERR_NONE 0 No error
KDC_ERR_NAME_EXP 1 Client’s entry in database has expired
KDC_ERR_SERVICE_EXP 2 Server’s entry in database has expired
KDC_ERR_BAD_PVNO 3 Requested protocol version number not supported
KDC_ERR_C_OLD_MAST_KVNO 4 Client’s key encrypted in old master key
KDC_ERR_S_OLD_MAST_KVNO 5 Server’s key encrypted in old master key
KDC_ERR_C_PRINCIPAL_UNKNOWN 6 Client not found in Kerberos database
KDC_ERR_S_PRINCIPAL_UNKNOWN 7 Server not found in Kerberos database

Section 8.3. - 52 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

KDC_ERR_PRINCIPAL_NOT_UNIQUE 8 Multiple principal entries in database
KDC_ERR_NULL_KEY 9 The client or server has a null key
KDC_ERR_CANNOT_POSTDATE 10 Ticket not eligible for postdating
KDC_ERR_NEVER_VALID 11 Requested start time is later than end time
KDC_ERR_POLICY 12 KDC policy rejects request
KDC_ERR_BADOPTION 13 KDC cannot accommodate requested option
KDC_ERR_ETYPE_NOSUPP 14 KDC has no support for encryption type
KDC_ERR_SUMTYPE_NOSUPP 15 KDC has no support for checksum type
KDC_ERR_PADATA_TYPE_NOSUPP 16 KDC has no support for padata type
KDC_ERR_TRTYPE_NOSUPP 17 KDC has no support for transited type
KDC_ERR_CLIENT_REVOKED 18 Clients credentials have been revoked
KDC_ERR_SERVICE_REVOKED 19 Credentials for server have been revoked
KDC_ERR_TGT_REVOKED 20 TGT has been revoked
KDC_ERR_CLIENT_NOTYET 21 Client not yet valid - try again later
KDC_ERR_SERVICE_NOTYET 22 Server not yet valid - try again later
KDC_ERR_KEY_EXPIRED 23 Password has expired - change password to reset
KDC_ERR_PREAUTH_FAILED 24 Pre-authentication information was invalid
KDC_ERR_PREAUTH_REQUIRED 25 Additional pre-authenticationrequired†
KRB_AP_ERR_BAD_INTEGRITY 31 Integrity check on decrypted field failed
KRB_AP_ERR_TKT_EXPIRED 32 Ticket expired
KRB_AP_ERR_TKT_NYV 33 Ticket not yet valid
KRB_AP_ERR_REPEAT 34 Request is a replay
KRB_AP_ERR_NOT_US 35 The ticket isn’t for us
KRB_AP_ERR_BADMATCH 36 Ticket and authenticator don’t match
KRB_AP_ERR_SKEW 37 Clock skew too great
KRB_AP_ERR_BADADDR 38 Incorrect net address
KRB_AP_ERR_BADVERSION 39 Protocol version mismatch
KRB_AP_ERR_MSG_TYPE 40 Invalid msg type
KRB_AP_ERR_MODIFIED 41 Message stream modified
KRB_AP_ERR_BADORDER 42 Message out of order
KRB_AP_ERR_BADKEYVER 44 Specified version of key is not available
KRB_AP_ERR_NOKEY 45 Service key not available
KRB_AP_ERR_MUT_FAIL 46 Mutual authentication failed
KRB_AP_ERR_BADDIRECTION 47 Incorrect message direction
KRB_AP_ERR_METHOD 48 Alternative authentication method required†
KRB_AP_ERR_BADSEQ 49 Incorrect sequence number in message
KRB_AP_ERR_INAPP_CKSUM 50 Inappropriate type of checksum in message

KRB_ERR_GENERIC 60 Generic error (description in e-text)
KRB_ERR_FIELD_TOOLONG 61 Field is too long for this implementation

9. Interoperability requirements
Version 5 of the Kerberos protocol supports a myriad of options. Among these are multiple encryp-

tion and checksum types, alternative encoding schemes for the transited field, optional mechanisms for
pre-authentication, the handling of tickets with no addresses, options for mutual authentication, user to user
authentication, support for proxies, forwarding, postdating, and renewing tickets, the format of realm
names, and the handling of authorization data.

In order to ensure the interoperability of realms, it is necessary to define a minimal configuration
which must be supported by all implementations. This minimal configuration is subject to change as
hhhhhhhhhhhhhhhhhh
† This error carries additional information in the e-data field. The contents of the e-data field for this message is described
in section 5.9.1.

Section 9. - 53 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

technology does. For example, if at some later date it is discovered that one of the required encryption or
checksum algorithms is not secure, it will be replaced.

9.1. Specification 1
This section defines the first specification of these options. Implementations which are configured in

this way can be said to support Kerberos Version 5 Specification 1 (5.1).

Encryption and checksum methods

The following encryption and checksum mechanisms must be supported. Implementations may support
other mechanisms as well, but the additional mechanisms may only be used when communicating with
principals known to also support them:
Encryption: DES-CBC-MD5
Checksums: CRC-32, DES-MAC, DES-MAC-K, and DES-MD5

Realm Names

All implementations must understand hierarchical realms in both the Internet Domain and the X.500 style.
When a ticket granting ticket for an unknown realm is requested, the KDC must be able to determine the
names of the intermediate realms between the KDCs realm and the requested realm.

Transited field encoding

DOMAIN-X500-COMPRESS (described in section 3.3.3.1) must be supported. Alternative encodings
may be supported, but they may be used only when that encoding is supported by ALL intermediate
realms.

Pre-authentication methods

The TGS-REQ method must be supported. The TGS-REQ method is not used on the initial request. The
PA-ENC-TIMESTAMP method must be supported by clients but whether it is enabled by default may be
determined on a realm by realm basis. If not used in the initial request and the error
KDC_ERR_PREAUTH_REQUIRED is returned specifying PA-ENC-TIMESTAMP as an acceptable
method, the client should retry the initial request using the PA-ENC-TIMESTAMP pre-authentication
method. Servers need not support the PA-ENC-TIMESTAMP method, but if not supported the server
should ignore the presence of PA-ENC-TIMESTAMP pre-authentication in a request.

Mutual authentication

Mutual authentication (via the KRB_AP_REP message) must be supported.

Ticket addresses and flags

All KDC’s must pass on tickets that carry no addresses (i.e. if a TGT contains no addresses, the KDC will
return derivative tickets), but each realm may set its own policy for issuing such tickets, and each applica-
tion server will set its own policy with respect to accepting them. By default, servers should not accept
them.

Proxies and forwarded tickets must be supported. Individual realms and application servers can set
their own policy on when such tickets will be accepted.

All implementations must recognize renewable and postdated tickets, but need not actually imple-
ment them. If these options are not supported, the starttime and endtime in the ticket shall specify a ticket’s
entire useful life. When a postdated ticket is decoded by a server, all implementations shall make the pres-
ence of the postdated flag visible to the calling server.

Section 9.1. - 54 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

User-to-user authentication

Support for user to user authentication (via the ENC-TKT-IN-SKEY KDC option) must be provided by
implementations, but individual realms may decide as a matter of policy to reject such requests on a per-
principal or realm-wide basis.

Authorization data

Implementations must pass all authorization data subfields from ticket-granting tickets to any derivative
tickets unless directed to suppress a subfield as part of the definition of that registered subfield type (it is
never incorrect to pass on a subfield, and no registered subfield types presently specify suppression at the
KDC).

Implementations must make the contents of any authorization data subfields available to the server
when a ticket is used. Implementations are not required to allow clients to specify the contents of the
authorization data fields.

9.2. Recommended KDC values
Following is a list of recommended values for a KDC implementation, based on the list of suggested
configuration constants (see section 4.4).

minimum lifetime 5 minutes

maximum renewable lifetime 1 week

maximum ticket lifetime 1 day

empty addresses only when suitable restrictions appear in authorization data

proxiable, etc. Allowed.

10. Acknowledgments
Early versions of this document, describing version 4 of the protocol, were written by Jennifer

Steiner (formerly at Project Athena); these drafts provided an excellent starting point for this current ver-
sion 5 specification. Many people in the Internet community have contributed ideas and suggested protocol
changes for version 5. Notable contributions came from Ted Anderson, Steve Bellovin and Michael Mer-
ritt [17], Daniel Bernstein, Mike Burrows, Donald Davis, Ravi Ganesan, Morrie Gasser, Virgil Gligor, Bill
Griffeth, Mark Lillibridge, Mark Lomas, Steve Lunt, Piers McMahon, Joe Pato, William Sommerfeld,
Stuart Stubblebine, Ralph Swick, Ted T’so, and Stanley Zanarotti. Many others commented and helped
shape this specification into its current form.

Section 10. - 55 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

11. REFERENCES

1. S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer, Section E.2.1: Kerberos Authentication
and Authorization System, M.I.T. Project Athena, Cambridge, Massachusetts (December 21, 1987).

2. J. G. Steiner, B. C. Neuman, and J. I. Schiller, ‘‘Kerberos: An Authentication Service for Open Net-
work Systems,’’ pp. 191-202 in Usenix Conference Proceedings, Dallas, Texas (February, 1988).

3. Roger M. Needham and Michael D. Schroeder, ‘‘Using Encryption for Authentication in Large Net-
works of Computers,’’ Communications of the ACM 21(12), pp. 993-999 (December, 1978).

4. Dorothy E. Denning and Giovanni Maria Sacco, ‘‘Timestamps in Key Distribution Protocols,’’ Com-
munications of the ACM 24(8), pp. 533-536 (August 1981).

5. John T. Kohl, B. Clifford Neuman, and Theodore Y. Ts’o, ‘‘The Evolution of the Kerberos Authenti-
cation Service,’’ in an IEEE Computer Society Text soon to be published (June 1992).

6. Don Davis and Ralph Swick, ‘‘Workstation Services and Kerberos Authentication at Project
Athena,’’ Technical Memorandum TM-424, MIT Laboratory for Computer Science (February
1990).

7. P. J. Levine, M. R. Gretzinger, J. M. Diaz, W. E. Sommerfeld, and K. Raeburn, Section E.1: Service
Management System, M.I.T. Project Athena, Cambridge, Massachusetts (1987).

8. CCITT, Recommendation X.509: The Directory Authentication Framework, December 1988.

9. B. Clifford Neuman, ‘‘Proxy-Based Authorization and Accounting for Distributed Systems,’’ in
Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, PA
(May, 1993).

10. J. Pato, Using Pre-Authentication to Avoid Password Guessing Attacks, Open Software Foundation
DCE Request for Comments 26 (December 1992).

11. National Bureau of Standards, U.S. Department of Commerce, ‘‘Data Encryption Standard,’’ Federal
Information Processing Standards Publication 46, Washington, DC (1977).

12. National Bureau of Standards, U.S. Department of Commerce, ‘‘DES Modes of Operation,’’ Federal
Information Processing Standards Publication 81, Springfield, VA (December 1980).

13. Stuart G. Stubblebine and Virgil D. Gligor, ‘‘On Message Integrity in Cryptographic Protocols,’’ in
Proceedings of the IEEE Symposium on Research in Security and Privacy, Oakland, California (May
1992).

14. International Organization for Standardization, ‘‘ISO Information Processing Systems - Data Com-
munication - High-Level Data Link Control Procedure - Frame Structure,’’ IS 3309 (October 1984).
3rd Edition.

15. R. Rivest, ‘‘The MD4 Message Digest Algorithm,’’ RFC 1320, MIT Laboratory for Computer Sci-
ence (April 1992).

16. R. Rivest, ‘‘The MD5 Message Digest Algorithm,’’ RFC 1321, MIT Laboratory for Computer Sci-
ence (April 1992).

17. S. M. Bellovin and M. Merritt, ‘‘Limitations of the Kerberos Authentication System,’’ Computer
Communications Review 20(5), pp. 119-132 (October 1990).

Section 11. - 56 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

A. Pseudo-code for protocol processing
This appendix provides pseudo-code describing how the messages are to be constructed and inter-

preted by clients and servers.

A.1. KRB_AS_REQ generation
request.pvno := protocol version; /* pvno = 5 */
request.msg-type := message type; /* type = KRB_AS_REQ */

if(pa_enc_timestamp_required) then
request.padata.padata-type = PA-ENC-TIMESTAMP;
get system_time;
padata-body.patimestamp,pausec = system_time;
encrypt padata-body into request.padata.padata-value

using client.key; /* derived from password */
endif

body.kdc-options := users’s preferences;
body.cname := user’s name;
body.realm := user’s realm;
body.sname := service’s name; /* usually "krbtgt", "localrealm" */
if (body.kdc-options.POSTDATED is set) then

body.from := requested starting time;
else

omit body.from;
endif
body.till := requested end time;
if (body.kdc-options.RENEWABLE is set) then

body.rtime := requested final renewal time;
endif
body.nonce := random_nonce();
body.etype := requested etypes;
if (user supplied addresses) then

body.addresses := user’s addresses;
else

omit body.addresses;
endif
omit body.enc-authorization-data;
request.req-body := body;

kerberos := lookup(name of local kerberos server (or servers));
send(packet,kerberos);

wait(for response);
if (timed_out) then

retry or use alternate server;
endif

A.2. KRB_AS_REQ verification and KRB_AS_REP generation
decode message into req;

client := lookup(req.cname,req.realm);
server := lookup(req.sname,req.realm);

get system_time;

Section A.2. - 57 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

kdc_time := system_time.seconds;

if (!client) then
/* no client in Database */
error_out(KDC_ERR_C_PRINCIPAL_UNKNOWN);

endif
if (!server) then

/* no server in Database */
error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);

endif

if(client.pa_enc_timestamp_required and
pa_enc_timestamp not present) then

error_out(KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP));
endif

if(pa_enc_timestamp present) then
decrypt req.padata-value into decrypted_enc_timestamp

using client.key;
using auth_hdr.authenticator.subkey;

if (decrypt_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);

if(decrypted_enc_timestamp is not within allowable skew) then
error_out(KDC_ERR_PREAUTH_FAILED);

endif
if(decrypted_enc_timestamp and usec is replay)

error_out(KDC_ERR_PREAUTH_FAILED);
endif
add decrypted_enc_timestamp and usec to replay cache;

endif

use_etype := first supported etype in req.etypes;

if (no support for req.etypes) then
error_out(KDC_ERR_ETYPE_NOSUPP);

endif

new_tkt.vno := ticket version; /* = 5 */
new_tkt.sname := req.sname;
new_tkt.srealm := req.srealm;
reset all flags in new_tkt.flags;

/* It should be noted that local policy may affect the */
/* processing of any of these flags. For example, some */
/* realms may refuse to issue renewable tickets */

if (req.kdc-options.FORWARDABLE is set) then
set new_tkt.flags.FORWARDABLE;

endif
if (req.kdc-options.PROXIABLE is set) then

set new_tkt.flags.PROXIABLE;
endif
if (req.kdc-options.ALLOW-POSTDATE is set) then

set new_tkt.flags.ALLOW-POSTDATE;

Section A.2. - 58 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

endif
if ((req.kdc-options.RENEW is set) or

(req.kdc-options.VALIDATE is set) or
(req.kdc-options.PROXY is set) or
(req.kdc-options.FORWARDED is set) or
(req.kdc-options.ENC-TKT-IN-SKEY is set)) then

error_out(KDC_ERR_BADOPTION);
endif

new_tkt.session := random_session_key();
new_tkt.cname := req.cname;
new_tkt.crealm := req.crealm;
new_tkt.transited := empty_transited_field();

new_tkt.authtime := kdc_time;

if (req.kdc-options.POSTDATED is set) then
if (against_postdate_policy(req.from)) then

error_out(KDC_ERR_POLICY);
endif
set new_tkt.flags.INVALID;
new_tkt.starttime := req.from;

else
omit new_tkt.starttime; /* treated as authtime when omitted */

endif
if (req.till = 0) then

till := infinity;
else

till := req.till;
endif

new_tkt.endtime := min(till,
new_tkt.starttime+client.max_life,
new_tkt.starttime+server.max_life,
new_tkt.starttime+max_life_for_realm);

if ((req.kdc-options.RENEWABLE-OK is set) and
(new_tkt.endtime < req.till)) then

/* we set the RENEWABLE option for later processing */
set req.kdc-options.RENEWABLE;
req.rtime := req.till;

endif

if (req.rtime = 0) then
rtime := infinity;

else
rtime := req.rtime;

endif

if (req.kdc-options.RENEWABLE is set) then
set new_tkt.flags.RENEWABLE;
new_tkt.renew-till := min(rtime,

new_tkt.starttime+client.max_rlife,
new_tkt.starttime+server.max_rlife,

Section A.2. - 59 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

new_tkt.starttime+max_rlife_for_realm);
else

omit new_tkt.renew-till; /* only present if RENEWABLE */
endif

if (req.addresses) then
new_tkt.caddr := req.addresses;

else
omit new_tkt.caddr;

endif

new_tkt.authorization_data := empty_authorization_data();

encode to-be-encrypted part of ticket into OCTET STRING;
new_tkt.enc-part := encrypt OCTET STRING

using etype_for_key(server.key), server.key, server.p_kvno;

/* Start processing the response */

resp.pvno := 5;
resp.msg-type := KRB_AS_REP;
resp.cname := req.cname;
resp.crealm := req.realm;
resp.ticket := new_tkt;

resp.key := new_tkt.session;
resp.last-req := fetch_last_request_info(client);
resp.nonce := req.nonce;
resp.key-expiration := client.expiration;
resp.flags := new_tkt.flags;

resp.authtime := new_tkt.authtime;
resp.starttime := new_tkt.starttime;
resp.endtime := new_tkt.endtime;

if (new_tkt.flags.RENEWABLE) then
resp.renew-till := new_tkt.renew-till;

endif

resp.realm := new_tkt.realm;
resp.sname := new_tkt.sname;

resp.caddr := new_tkt.caddr;

encode body of reply into OCTET STRING;

resp.enc-part := encrypt OCTET STRING
using use_etype, client.key, client.p_kvno;

send(resp);

Section A.2. - 60 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

A.3. KRB_AS_REP verification
decode response into resp;

if (resp.msg-type = KRB_ERROR) then
if(error = KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP)) then

set pa_enc_timestamp_required;
goto KRB_AS_REQ;

endif
process_error(resp);
return;

endif

/* On error, discard the response, and zero the session key */
/* from the response immediately */

key = get_decryption_key(resp.enc-part.kvno, resp.enc-part.etype,
resp.padata);

unencrypted part of resp := decode of decrypt of resp.enc-part
using resp.enc-part.etype and key;

zero(key);

if (common_as_rep_tgs_rep_checks fail) then
destroy resp.key;
return error;

endif

if near(resp.princ_exp) then
print(warning message);

endif
save_for_later(ticket,session,client,server,times,flags);

A.4. KRB_AS_REP and KRB_TGS_REP common checks
if (decryption_error() or

(req.cname != resp.cname) or
(req.realm != resp.crealm) or
(req.sname != resp.sname) or
(req.realm != resp.realm) or
(req.nonce != resp.nonce) or
(req.addresses != resp.caddr)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif

/* make sure no flags are set that shouldn’t be, and that all that */
/* should be are set */
if (!check_flags_for_compatability(req.kdc-options,resp.flags)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif

if ((req.from = 0) and
(resp.starttime is not within allowable skew)) then

destroy resp.key;
return KRB_AP_ERR_SKEW;

Section A.4. - 61 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

endif
if ((req.from != 0) and (req.from != resp.starttime)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif
if ((req.till != 0) and (resp.endtime > req.till)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif

if ((req.kdc-options.RENEWABLE is set) and
(req.rtime != 0) and (resp.renew-till > req.rtime)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif
if ((req.kdc-options.RENEWABLE-OK is set) and

(resp.flags.RENEWABLE) and
(req.till != 0) and
(resp.renew-till > req.till)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif

A.5. KRB_TGS_REQ generation
/* Note that make_application_request might have to recursivly */
/* call this routine to get the appropriate ticket-granting ticket */

request.pvno := protocol version; /* pvno = 5 */
request.msg-type := message type; /* type = KRB_TGS_REQ */

body.kdc-options := users’s preferences;
/* If the TGT is not for the realm of the end-server */
/* then the sname will be for a TGT for the end-realm */
/* and the realm of the requested ticket (body.realm) */
/* will be that of the TGS to which the TGT we are */
/* sending applies */
body.sname := service’s name;
body.realm := service’s realm;

if (body.kdc-options.POSTDATED is set) then
body.from := requested starting time;

else
omit body.from;

endif
body.till := requested end time;
if (body.kdc-options.RENEWABLE is set) then

body.rtime := requested final renewal time;
endif
body.nonce := random_nonce();
body.etype := requested etypes;
if (user supplied addresses) then

body.addresses := user’s addresses;
else

omit body.addresses;

Section A.5. - 62 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

endif

body.enc-authorization-data := user-supplied data;
if (body.kdc-options.ENC-TKT-IN-SKEY) then

body.additional-tickets_ticket := second TGT;
endif

request.req-body := body;
check := generate_checksum (req.body,checksumtype);

request.padata[0].padata-type := PA-TGS-REQ;
request.padata[0].padata-value := create a KRB_AP_REQ using

the TGT and checksum

/* add in any other padata as required/supplied */

kerberos := lookup(name of local kerberose server (or servers));
send(packet,kerberos);

wait(for response);
if (timed_out) then

retry or use alternate server;
endif

A.6. KRB_TGS_REQ verification and KRB_TGS_REP generation
/* note that reading the application request requires first
determining the server for which a ticket was issued, and choosing the
correct key for decryption. The name of the server appears in the
plaintext part of the ticket. */

if (no KRB_AP_REQ in req.padata) then
error_out(KDC_ERR_PADATA_TYPE_NOSUPP);

endif
verify KRB_AP_REQ in req.padata;

/* Note that the realm in which the Kerberos server is operating is
determined by the instance from the ticket-granting ticket. The realm
in the ticket-granting ticket is the realm under which the ticket
granting ticket was issued. It is possible for a single Kerberos
server to support more than one realm. */

auth_hdr := KRB_AP_REQ;
tgt := auth_hdr.ticket;

if (tgt.sname is not a TGT for local realm and is not req.sname) then
error_out(KRB_AP_ERR_NOT_US);

realm := realm_tgt_is_for(tgt);

decode remainder of request;

if (auth_hdr.authenticator.cksum is missing) then
error_out(KRB_AP_ERR_INAPP_CKSUM);

endif

Section A.6. - 63 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

if (auth_hdr.authenticator.cksum type is not supported) then
error_out(KDC_ERR_SUMTYPE_NOSUPP);

endif
if (auth_hdr.authenticator.cksum is not both collision-proof and keyed) then

error_out(KRB_AP_ERR_INAPP_CKSUM);
endif

set computed_checksum := checksum(req);
if (computed_checksum != auth_hdr.authenticatory.cksum) then

error_out(KRB_AP_ERR_MODIFIED);
endif

server := lookup(req.sname,realm);

if (!server) then
if (is_foreign_tgt_name(server)) then

server := best_intermediate_tgs(server);
else

/* no server in Database */
error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);

endif
endif

session := generate_random_session_key();

use_etype := first supported etype in req.etypes;

if (no support for req.etypes) then
error_out(KDC_ERR_ETYPE_NOSUPP);

endif

new_tkt.vno := ticket version; /* = 5 */
new_tkt.sname := req.sname;
new_tkt.srealm := realm;
reset all flags in new_tkt.flags;

/* It should be noted that local policy may affect the */
/* processing of any of these flags. For example, some */
/* realms may refuse to issue renewable tickets */

new_tkt.caddr := tgt.caddr;
resp.caddr := NULL; /* We only include this if they change */
if (req.kdc-options.FORWARDABLE is set) then

if (tgt.flags.FORWARDABLE is reset) then
error_out(KDC_ERR_BADOPTION);

endif
set new_tkt.flags.FORWARDABLE;

endif
if (req.kdc-options.FORWARDED is set) then

if (tgt.flags.FORWARDABLE is reset) then
error_out(KDC_ERR_BADOPTION);

endif
set new_tkt.flags.FORWARDED;

Section A.6. - 64 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

new_tkt.caddr := req.addresses;
resp.caddr := req.addresses;

endif
if (tgt.flags.FORWARDED is set) then

set new_tkt.flags.FORWARDED;
endif

if (req.kdc-options.PROXIABLE is set) then
if (tgt.flags.PROXIABLE is reset)

error_out(KDC_ERR_BADOPTION);
endif
set new_tkt.flags.PROXIABLE;

endif
if (req.kdc-options.PROXY is set) then

if (tgt.flags.PROXIABLE is reset) then
error_out(KDC_ERR_BADOPTION);

endif
set new_tkt.flags.PROXY;
new_tkt.caddr := req.addresses;
resp.caddr := req.addresses;

endif

if (req.kdc-options.POSTDATE is set) then
if (tgt.flags.POSTDATE is reset)

error_out(KDC_ERR_BADOPTION);
endif
set new_tkt.flags.POSTDATE;

endif
if (req.kdc-options.POSTDATED is set) then

if (tgt.flags.POSTDATE is reset) then
error_out(KDC_ERR_BADOPTION);

endif
set new_tkt.flags.POSTDATED;
set new_tkt.flags.INVALID;
if (against_postdate_policy(req.from)) then

error_out(KDC_ERR_POLICY);
endif
new_tkt.starttime := req.from;

endif

if (req.kdc-options.VALIDATE is set) then
if (tgt.flags.INVALID is reset) then

error_out(KDC_ERR_POLICY);
endif
if (tgt.starttime > kdc_time) then

error_out(KRB_AP_ERR_NYV);
endif
if (check_hot_list(tgt)) then

error_out(KRB_AP_ERR_REPEAT);
endif
tkt := tgt;
reset new_tkt.flags.INVALID;

endif

Section A.6. - 65 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

if (req.kdc-options.(any flag except ENC-TKT-IN-SKEY, RENEW,
and those already processed) is set) then

error_out(KDC_ERR_BADOPTION);
endif

new_tkt.authtime := tgt.authtime;

if (req.kdc-options.RENEW is set) then
/* Note that if the endtime has already passed, the ticket would */
/* have been rejected in the initial authentication stage, so */
/* there is no need to check again here */

if (tgt.flags.RENEWABLE is reset) then
error_out(KDC_ERR_BADOPTION);

endif
if (tgt.renew-till >= kdc_time) then

error_out(KRB_AP_ERR_TKT_EXPIRED);
endif
tkt := tgt;
new_tkt.starttime := kdc_time;
old_life := tgt.endttime - tgt.starttime;
new_tkt.endtime := min(tgt.renew-till,

new_tkt.starttime + old_life);
else

new_tkt.starttime := kdc_time;
if (req.till = 0) then

till := infinity;
else

till := req.till;
endif
new_tkt.endtime := min(till,

new_tkt.starttime+client.max_life,
new_tkt.starttime+server.max_life,
new_tkt.starttime+max_life_for_realm,
tgt.endtime);

if ((req.kdc-options.RENEWABLE-OK is set) and
(new_tkt.endtime < req.till) and
(tgt.flags.RENEWABLE is set) then

/* we set the RENEWABLE option for later processing */
set req.kdc-options.RENEWABLE;
req.rtime := min(req.till, tgt.renew-till);

endif
endif

if (req.rtime = 0) then
rtime := infinity;

else
rtime := req.rtime;

endif

if ((req.kdc-options.RENEWABLE is set) and
(tgt.flags.RENEWABLE is set)) then

set new_tkt.flags.RENEWABLE;
new_tkt.renew-till := min(rtime,

Section A.6. - 66 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

new_tkt.starttime+client.max_rlife,
new_tkt.starttime+server.max_rlife,
new_tkt.starttime+max_rlife_for_realm,
tgt.renew-till);

else
new_tkt.renew-till := OMIT; /* leave the renew-till field out */

endif
if (req.enc-authorization-data is present) then

decrypt req.enc-authorization-data into decrypted_authorization_data
using auth_hdr.authenticator.subkey;

if (decrypt_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);

endif
endif
new_tkt.authorization_data := req.auth_hdr.ticket.authorization_data +

decrypted_authorization_data;

new_tkt.key := session;
new_tkt.crealm := tgt.crealm;
new_tkt.cname := req.auth_hdr.ticket.cname;

if (realm_tgt_is_for(tgt) := tgt.realm) then
/* tgt issued by local realm */
new_tkt.transited := tgt.transited;

else
/* was issued for this realm by some other realm */
if (tgt.transited.tr-type not supported) then

error_out(KDC_ERR_TRTYPE_NOSUPP);
endif
new_tkt.transited := compress_transited(tgt.transited + tgt.realm)

endif

encode encrypted part of new_tkt into OCTET STRING;
if (req.kdc-options.ENC-TKT-IN-SKEY is set) then

if (server not specified) then
server = req.second_ticket.client;

endif
if ((req.second_ticket is not a TGT) or

(req.second_ticket.client != server)) then
error_out(KDC_ERR_POLICY);

endif

new_tkt.enc-part := encrypt OCTET STRING using
using etype_for_key(second-ticket.key), second-ticket.key;

else
new_tkt.enc-part := encrypt OCTET STRING

using etype_for_key(server.key), server.key, server.p_kvno;
endif

resp.pvno := 5;
resp.msg-type := KRB_TGS_REP;
resp.crealm := tgt.crealm;
resp.cname := tgt.cname;

Section A.6. - 67 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

resp.ticket := new_tkt;

resp.key := session;
resp.nonce := req.nonce;
resp.last-req := fetch_last_request_info(client);
resp.flags := new_tkt.flags;

resp.authtime := new_tkt.authtime;
resp.starttime := new_tkt.starttime;
resp.endtime := new_tkt.endtime;

omit resp.key-expiration;

resp.sname := new_tkt.sname;
resp.realm := new_tkt.realm;

if (new_tkt.flags.RENEWABLE) then
resp.renew-till := new_tkt.renew-till;

endif

encode body of reply into OCTET STRING;

if (req.padata.authenticator.subkey)
resp.enc-part := encrypt OCTET STRING using use_etype,

req.padata.authenticator.subkey;
else resp.enc-part := encrypt OCTET STRING using use_etype, tgt.key;

send(resp);

A.7. KRB_TGS_REP verification
decode response into resp;

if (resp.msg-type = KRB_ERROR) then
process_error(resp);
return;

endif

/* On error, discard the response, and zero the session key from
the response immediately */

if (req.padata.authenticator.subkey)
unencrypted part of resp := decode of decrypt of resp.enc-part

using resp.enc-part.etype and subkey;
else unencrypted part of resp := decode of decrypt of resp.enc-part

using resp.enc-part.etype and tgt’s session key;
if (common_as_rep_tgs_rep_checks fail) then

destroy resp.key;
return error;

endif

check authorization_data as necessary;
save_for_later(ticket,session,client,server,times,flags);

Section A.7. - 68 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

A.8. Authenticator generation
body.authenticator-vno := authenticator vno; /* = 5 */
body.cname, body.crealm := client name;
if (supplying checksum) then

body.cksum := checksum;
endif
get system_time;
body.ctime, body.cusec := system_time;
if (selecting sub-session key) then

select sub-session key;
body.subkey := sub-session key;

endif
if (using sequence numbers) then

select initial sequence number;
body.seq-number := initial sequence;

endif

A.9. KRB_AP_REQ generation
obtain ticket and session_key from cache;

packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_AP_REQ */

if (desired(MUTUAL_AUTHENTICATION)) then
set packet.ap-options.MUTUAL-REQUIRED;

else
reset packet.ap-options.MUTUAL-REQUIRED;

endif
if (using session key for ticket) then

set packet.ap-options.USE-SESSION-KEY;
else

reset packet.ap-options.USE-SESSION-KEY;
endif
packet.ticket := ticket; /* ticket */
generate authenticator;
encode authenticator into OCTET STRING;
encrypt OCTET STRING into packet.authenticator using session_key;

A.10. KRB_AP_REQ verification
receive packet;
if (packet.pvno != 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.msg-type != KRB_AP_REQ) then

error_out(KRB_AP_ERR_MSG_TYPE);
endif
if (packet.ticket.tkt_vno != 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.ap_options.USE-SESSION-KEY is set) then

retrieve session key from ticket-granting ticket for
packet.ticket.{sname,srealm,enc-part.etype};

Section A.10. - 69 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

else
retrieve service key for
packet.ticket.{sname,srealm,enc-part.etype,enc-part.skvno};

endif
if (no_key_available) then

if (cannot_find_specified_skvno) then
error_out(KRB_AP_ERR_BADKEYVER);

else
error_out(KRB_AP_ERR_NOKEY);

endif
endif
decrypt packet.ticket.enc-part into decr_ticket using retrieved key;
if (decryption_error()) then

error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
decrypt packet.authenticator into decr_authenticator

using decr_ticket.key;
if (decryption_error()) then

error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
if (decr_authenticator.{cname,crealm} !=

decr_ticket.{cname,crealm}) then
error_out(KRB_AP_ERR_BADMATCH);

endif
if (decr_ticket.caddr is present) then

if (sender_address(packet) is not in decr_ticket.caddr) then
error_out(KRB_AP_ERR_BADADDR);

endif
elseif (application requires addresses) then

error_out(KRB_AP_ERR_BADADDR);
endif
if (not in_clock_skew(decr_authenticator.ctime,

decr_authenticator.cusec)) then
error_out(KRB_AP_ERR_SKEW);

endif
if (repeated(decr_authenticator.{ctime,cusec,cname,crealm})) then

error_out(KRB_AP_ERR_REPEAT);
endif
save_identifier(decr_authenticator.{ctime,cusec,cname,crealm});
get system_time;
if ((decr_ticket.starttime-system_time > CLOCK_SKEW) or

(decr_ticket.flags.INVALID is set)) then
/* it hasn’t yet become valid */
error_out(KRB_AP_ERR_TKT_NYV);

endif
if (system_time-decr_ticket.endtime > CLOCK_SKEW) then

error_out(KRB_AP_ERR_TKT_EXPIRED);
endif
/* caller must check decr_ticket.flags for any pertinent details */
return(OK, decr_ticket, packet.ap_options.MUTUAL-REQUIRED);

Section A.10. - 70 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

A.11. KRB_AP_REP generation
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_AP_REP */

body.ctime := packet.ctime;
body.cusec := packet.cusec;
if (selecting sub-session key) then

select sub-session key;
body.subkey := sub-session key;

endif
if (using sequence numbers) then

select initial sequence number;
body.seq-number := initial sequence;

endif

encode body into OCTET STRING;

select encryption type;
encrypt OCTET STRING into packet.enc-part;

A.12. KRB_AP_REP verification
receive packet;
if (packet.pvno != 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.msg-type != KRB_AP_REP) then

error_out(KRB_AP_ERR_MSG_TYPE);
endif
cleartext := decrypt(packet.enc-part) using ticket’s session key;
if (decryption_error()) then

error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
if (cleartext.ctime != authenticator.ctime) then

error_out(KRB_AP_ERR_MUT_FAIL);
endif
if (cleartext.cusec != authenticator.cusec) then

error_out(KRB_AP_ERR_MUT_FAIL);
endif
if (cleartext.subkey is present) then

save cleartext.subkey for future use;
endif
if (cleartext.seq-number is present) then

save cleartext.seq-number for future verifications;
endif
return(AUTHENTICATION_SUCCEEDED);

A.13. KRB_SAFE generation
collect user data in buffer;

/* assemble packet: */
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_SAFE */

Section A.13. - 71 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

body.user-data := buffer; /* DATA */
if (using timestamp) then

get system_time;
body.timestamp, body.usec := system_time;

endif
if (using sequence numbers) then

body.seq-number := sequence number;
endif
body.s-address := sender host addresses;
if (only one recipient) then

body.r-address := recipient host address;
endif
checksum.cksumtype := checksum type;
compute checksum over body;
checksum.checksum := checksum value; /* checksum.checksum */
packet.cksum := checksum;
packet.safe-body := body;

A.14. KRB_SAFE verification
receive packet;
if (packet.pvno != 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.msg-type != KRB_SAFE) then

error_out(KRB_AP_ERR_MSG_TYPE);
endif
if (packet.checksum.cksumtype is not both collision-proof and keyed) then

error_out(KRB_AP_ERR_INAPP_CKSUM);
endif
if (safe_priv_common_checks_ok(packet)) then

set computed_checksum := checksum(packet.body);
if (computed_checksum != packet.checksum) then

error_out(KRB_AP_ERR_MODIFIED);
endif
return (packet, PACKET_IS_GENUINE);

else
return common_checks_error;

endif

A.15. KRB_SAFE and KRB_PRIV common checks
if (packet.s-address != O/S_sender(packet)) then

/* O/S report of sender not who claims to have sent it */
error_out(KRB_AP_ERR_BADADDR);

endif
if ((packet.r-address is present) and

(packet.r-address != local_host_address)) then
/* was not sent to proper place */
error_out(KRB_AP_ERR_BADADDR);

endif
if (((packet.timestamp is present) and

(not in_clock_skew(packet.timestamp,packet.usec))) or
(packet.timestamp is not present and timestamp expected)) then

error_out(KRB_AP_ERR_SKEW);

Section A.15. - 72 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

endif
if (repeated(packet.timestamp,packet.usec,packet.s-address)) then

error_out(KRB_AP_ERR_REPEAT);
endif
if (((packet.seq-number is present) and

((not in_sequence(packet.seq-number)))) or
(packet.seq-number is not present and sequence expected)) then

error_out(KRB_AP_ERR_BADORDER);
endif
if (packet.timestamp not present and packet.seq-number not present) then

error_out(KRB_AP_ERR_MODIFIED);
endif

save_identifier(packet.{timestamp,usec,s-address},
sender_principal(packet));

return PACKET_IS_OK;

A.16. KRB_PRIV generation
collect user data in buffer;

/* assemble packet: */
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_PRIV */

packet.enc-part.etype := encryption type;

body.user-data := buffer;
if (using timestamp) then

get system_time;
body.timestamp, body.usec := system_time;

endif
if (using sequence numbers) then

body.seq-number := sequence number;
endif
body.s-address := sender host addresses;
if (only one recipient) then

body.r-address := recipient host address;
endif

encode body into OCTET STRING;

select encryption type;
encrypt OCTET STRING into packet.enc-part.cipher;

A.17. KRB_PRIV verification
receive packet;
if (packet.pvno != 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.msg-type != KRB_PRIV) then

error_out(KRB_AP_ERR_MSG_TYPE);

Section A.17. - 73 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

endif

cleartext := decrypt(packet.enc-part) using negotiated key;
if (decryption_error()) then

error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif

if (safe_priv_common_checks_ok(cleartext)) then
return(cleartext.DATA, PACKET_IS_GENUINE_AND_UNMODIFIED);

else
return common_checks_error;

endif

A.18. KRB_CRED generation
invoke KRB_TGS; /* obtain tickets to be provided to peer */

/* assemble packet: */
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_CRED */

for (tickets[n] in tickets to be forwarded) do
packet.tickets[n] = tickets[n].ticket;

done

packet.enc-part.etype := encryption type;

for (ticket[n] in tickets to be forwarded) do
body.ticket-info[n].key = tickets[n].session;
body.ticket-info[n].prealm = tickets[n].crealm;
body.ticket-info[n].pname = tickets[n].cname;
body.ticket-info[n].flags = tickets[n].flags;
body.ticket-info[n].authtime = tickets[n].authtime;
body.ticket-info[n].starttime = tickets[n].starttime;
body.ticket-info[n].endtime = tickets[n].endtime;
body.ticket-info[n].renew-till = tickets[n].renew-till;
body.ticket-info[n].srealm = tickets[n].srealm;
body.ticket-info[n].sname = tickets[n].sname;
body.ticket-info[n].caddr = tickets[n].caddr;

done

get system_time;
body.timestamp, body.usec := system_time;

if (using nonce) then
body.nonce := nonce;

endif

if (using s-address) then
body.s-address := sender host addresses;

endif
if (limited recipients) then

body.r-address := recipient host address;
endif

Section A.18. - 74 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

encode body into OCTET STRING;

select encryption type;
encrypt OCTET STRING into packet.enc-part.cipher

using negotiated encryption key;

A.19. KRB_CRED verification
receive packet;
if (packet.pvno != 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.msg-type != KRB_CRED) then

error_out(KRB_AP_ERR_MSG_TYPE);
endif

cleartext := decrypt(packet.enc-part) using negotiated key;
if (decryption_error()) then

error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
if ((packet.r-address is present or required) and

(packet.s-address != O/S_sender(packet)) then
/* O/S report of sender not who claims to have sent it */
error_out(KRB_AP_ERR_BADADDR);

endif
if ((packet.r-address is present) and

(packet.r-address != local_host_address)) then
/* was not sent to proper place */
error_out(KRB_AP_ERR_BADADDR);

endif
if (not in_clock_skew(packet.timestamp,packet.usec)) then

error_out(KRB_AP_ERR_SKEW);
endif
if (repeated(packet.timestamp,packet.usec,packet.s-address)) then

error_out(KRB_AP_ERR_REPEAT);
endif
if (packet.nonce is required or present) and

(packet.nonce != expected-nonce) then
error_out(KRB_AP_ERR_MODIFIED);

endif

for (ticket[n] in tickets that were forwarded) do
save_for_later(ticket[n],key[n],principal[n],

server[n],times[n],flags[n]);
return

A.20. KRB_ERROR generation

/* assemble packet: */
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_ERROR */

get system_time;

Section A.20. - 75 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

packet.stime, packet.susec := system_time;
packet.realm, packet.sname := server name;

if (client time available) then
packet.ctime, packet.cusec := client_time;

endif
packet.error-code := error code;
if (client name available) then

packet.cname, packet.crealm := client name;
endif
if (error text available) then

packet.e-text := error text;
endif
if (error data available) then

packet.e-data := error data;
endif

- 76 - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

- lxxvii - Expires 15 October 1993

-- --

Table of Contents

Overview ... 1

Background .. 1

1. Introduction .. 2

1.1. Cross-Realm Operation ... 3

1.2. Environmental assumptions ... 3

1.3. Glossary of terms .. 4

2. Ticket flag uses and requests .. 5

2.1. Initial and pre-authenticated tickets ... 5

2.2. Invalid tickets .. 6

2.3. Renewable tickets ... 6

2.4. Postdated tickets ... 6

2.5. Proxiable and proxy tickets ... 7

2.6. Forwardable tickets .. 7

2.7. Other KDC options ... 7

3. Message Exchanges .. 7

3.1. The Authentication Service Exchange .. 7

3.1.1. Generation of KRB_AS_REQ message .. 8

3.1.2. Receipt of KRB_AS_REQ message .. 9

3.1.3. Generation of KRB_AS_REP message ... 9

3.1.4. Generation of KRB_ERROR message .. 10

3.1.5. Receipt of KRB_AS_REP message ... 10

3.1.6. Receipt of KRB_ERROR message .. 10

3.2. The Client/Server Authentication Exchange .. 10

3.2.1. The KRB_AP_REQ message .. 10

3.2.2. Generation of a KRB_AP_REQ message ... 11

3.2.3. Receipt of KRB_AP_REQ message .. 11

3.2.4. Generation of a KRB_AP_REP message .. 12

3.2.5. Receipt of KRB_AP_REP message ... 12

3.2.6. Using the encryption key ... 12

3.3. The Ticket-Granting Service (TGS) Exchange .. 13

3.3.1. Generation of KRB_TGS_REQ message .. 13

3.3.2. Receipt of KRB_TGS_REQ message ... 14

3.3.3. Generation of KRB_TGS_REP message .. 15

3.3.3.1. Encoding the transited field .. 16

3.3.4. Receipt of KRB_TGS_REP message .. 17

3.4. The KRB_SAFE Exchange .. 17

3.4.1. Generation of a KRB_SAFE message ... 17

- i - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

3.4.2. Receipt of KRB_SAFE message ... 18

3.5. The KRB_PRIV Exchange ... 18

3.5.1. Generation of a KRB_PRIV message ... 18

3.5.2. Receipt of KRB_PRIV message .. 18

3.6. The KRB_CRED Exchange ... 19

3.6.1. Generation of a KRB_CRED message .. 19

3.6.2. Receipt of KRB_CRED message .. 19

4. The Kerberos Database ... 20

4.1. Database contents ... 20

4.2. Additional fields .. 20

4.3. Frequently Changing Fields ... 21

4.4. Site Constants .. 21

5. Message Specifications ... 21

5.1. ASN.1 Distinguished Encoding Representation ... 22

5.2. ASN.1 Base Definitions ... 22

5.3. Tickets and Authenticators .. 24

5.3.1. Tickets .. 24

5.3.2. Authenticators .. 27

5.4. Specifications for the AS and TGS exchanges .. 29

5.4.1. KRB_KDC_REQ definition .. 29

5.4.2. KRB_KDC_REP definition ... 33

5.5. Client/Server (CS) message specifications .. 35

5.5.1. KRB_AP_REQ definition .. 35

5.5.2. KRB_AP_REP definition .. 36

5.5.3. Error message reply ... 37

5.6. KRB_SAFE message specification .. 37

5.6.1. KRB_SAFE definition ... 37

5.7. KRB_PRIV message specification ... 38

5.7.1. KRB_PRIV definition .. 38

5.8. KRB_CRED message specification ... 39

5.8.1. KRB_CRED definition .. 39

5.9. Error message specification ... 40

5.9.1. KRB_ERROR definition .. 41

6. Encryption and Checksum Specifications ... 42

6.1. Encryption Specifications ... 42

6.2. Encryption Keys .. 44

6.3. Encryption Systems .. 44

6.3.1. The NULL Encryption System (null) .. 44

6.3.2. DES in CBC mode with a CRC-32 checksum (des-cbc-crc) .. 44

6.3.3. DES in CBC mode with an MD4 checksum (des-cbc-md4) ... 44

6.3.4. DES in CBC mode with an MD5 checksum (des-cbc-md5) ... 45

6.4. Checksums ... 46

- ii - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

6.4.1. The CRC-32 Checksum (crc32) .. 46

6.4.2. The RSA MD4 Checksum (rsa-md4) .. 46

6.4.3. RSA MD4 Cryptographic Checksum Using DES (rsa-md4-des) ... 46

6.4.4. The RSA MD5 Checksum (rsa-md5) .. 47

6.4.5. RSA MD5 Cryptographic Checksum Using DES (rsa-md5-des) ... 47

6.4.6. DES cipher-block chained checksum (des-mac) ... 47

6.4.7. RSA MD4 Cryptographic Checksum Using DES alternative (rsa-md4-des-k) 48

6.4.8. DES cipher-block chained checksum alternative (des-mac-k) .. 48

7. Naming Constraints ... 48

7.1. Realm Names ... 48

7.2. Principal Names .. 49

7.2.1. Name of server principals .. 50

8. Constants and other defined values .. 50

8.1. Host address types .. 50

8.2. KDC messages ... 51

8.2.1. IP transport ... 51

8.2.2. OSI transport .. 51

8.2.3. Name of the TGS ... 51

8.3. Protocol constants and associated values ... 51

9. Interoperability requirements .. 53

9.1. Specification 1 .. 54

9.2. Recommended KDC values ... 55

10. Acknowledgments .. 55

11. REFERENCES .. 56

A. Pseudo-code for protocol processing ... 57

A.1. KRB_AS_REQ generation .. 57

A.2. KRB_AS_REQ verification and KRB_AS_REP generation ... 57

A.3. KRB_AS_REP verification ... 61

A.4. KRB_AS_REP and KRB_TGS_REP common checks ... 61

A.5. KRB_TGS_REQ generation ... 62

A.6. KRB_TGS_REQ verification and KRB_TGS_REP generation .. 63

A.7. KRB_TGS_REP verification .. 68

A.8. Authenticator generation .. 69

A.9. KRB_AP_REQ generation .. 69

A.10. KRB_AP_REQ verification .. 69

A.11. KRB_AP_REP generation .. 71

A.12. KRB_AP_REP verification ... 71

A.13. KRB_SAFE generation ... 71

A.14. KRB_SAFE verification .. 72

A.15. KRB_SAFE and KRB_PRIV common checks .. 72

A.16. KRB_PRIV generation .. 73

A.17. KRB_PRIV verification ... 73

- iii - Expires 15 October 1993

-- --

Version 5 - Revision 5.2

A.18. KRB_CRED generation .. 74

A.19. KRB_CRED verification ... 75

A.20. KRB_ERROR generation ... 75

- iv - Expires 15 October 1993

-- --

